123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197 |
- #!/usr/bin/env python
- '''
- Feature-based image matching sample.
- Note, that you will need the https://github.com/opencv/opencv_contrib repo for SIFT and SURF
- USAGE
- find_obj.py [--feature=<sift|surf|orb|akaze|brisk>[-flann]] [ <image1> <image2> ]
- --feature - Feature to use. Can be sift, surf, orb or brisk. Append '-flann'
- to feature name to use Flann-based matcher instead bruteforce.
- Press left mouse button on a feature point to see its matching point.
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import numpy as np
- import cv2 as cv
- from common import anorm, getsize
- FLANN_INDEX_KDTREE = 1 # bug: flann enums are missing
- FLANN_INDEX_LSH = 6
- def init_feature(name):
- chunks = name.split('-')
- if chunks[0] == 'sift':
- detector = cv.SIFT_create()
- norm = cv.NORM_L2
- elif chunks[0] == 'surf':
- detector = cv.xfeatures2d.SURF_create(800)
- norm = cv.NORM_L2
- elif chunks[0] == 'orb':
- detector = cv.ORB_create(400)
- norm = cv.NORM_HAMMING
- elif chunks[0] == 'akaze':
- detector = cv.AKAZE_create()
- norm = cv.NORM_HAMMING
- elif chunks[0] == 'brisk':
- detector = cv.BRISK_create()
- norm = cv.NORM_HAMMING
- else:
- return None, None
- if 'flann' in chunks:
- if norm == cv.NORM_L2:
- flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
- else:
- flann_params= dict(algorithm = FLANN_INDEX_LSH,
- table_number = 6, # 12
- key_size = 12, # 20
- multi_probe_level = 1) #2
- matcher = cv.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329)
- else:
- matcher = cv.BFMatcher(norm)
- return detector, matcher
- def filter_matches(kp1, kp2, matches, ratio = 0.75):
- mkp1, mkp2 = [], []
- for m in matches:
- if len(m) == 2 and m[0].distance < m[1].distance * ratio:
- m = m[0]
- mkp1.append( kp1[m.queryIdx] )
- mkp2.append( kp2[m.trainIdx] )
- p1 = np.float32([kp.pt for kp in mkp1])
- p2 = np.float32([kp.pt for kp in mkp2])
- kp_pairs = zip(mkp1, mkp2)
- return p1, p2, list(kp_pairs)
- def explore_match(win, img1, img2, kp_pairs, status = None, H = None):
- h1, w1 = img1.shape[:2]
- h2, w2 = img2.shape[:2]
- vis = np.zeros((max(h1, h2), w1+w2), np.uint8)
- vis[:h1, :w1] = img1
- vis[:h2, w1:w1+w2] = img2
- vis = cv.cvtColor(vis, cv.COLOR_GRAY2BGR)
- if H is not None:
- corners = np.float32([[0, 0], [w1, 0], [w1, h1], [0, h1]])
- corners = np.int32( cv.perspectiveTransform(corners.reshape(1, -1, 2), H).reshape(-1, 2) + (w1, 0) )
- cv.polylines(vis, [corners], True, (255, 255, 255))
- if status is None:
- status = np.ones(len(kp_pairs), np.bool_)
- status = status.reshape((len(kp_pairs), 1))
- p1, p2 = [], [] # python 2 / python 3 change of zip unpacking
- for kpp in kp_pairs:
- p1.append(np.int32(kpp[0].pt))
- p2.append(np.int32(np.array(kpp[1].pt) + [w1, 0]))
- green = (0, 255, 0)
- red = (0, 0, 255)
- kp_color = (51, 103, 236)
- for (x1, y1), (x2, y2), inlier in zip(p1, p2, status):
- if inlier:
- col = green
- cv.circle(vis, (x1, y1), 2, col, -1)
- cv.circle(vis, (x2, y2), 2, col, -1)
- else:
- col = red
- r = 2
- thickness = 3
- cv.line(vis, (x1-r, y1-r), (x1+r, y1+r), col, thickness)
- cv.line(vis, (x1-r, y1+r), (x1+r, y1-r), col, thickness)
- cv.line(vis, (x2-r, y2-r), (x2+r, y2+r), col, thickness)
- cv.line(vis, (x2-r, y2+r), (x2+r, y2-r), col, thickness)
- vis0 = vis.copy()
- for (x1, y1), (x2, y2), inlier in zip(p1, p2, status):
- if inlier:
- cv.line(vis, (x1, y1), (x2, y2), green)
- cv.imshow(win, vis)
- def onmouse(event, x, y, flags, param):
- cur_vis = vis
- if flags & cv.EVENT_FLAG_LBUTTON:
- cur_vis = vis0.copy()
- r = 8
- m = (anorm(np.array(p1) - (x, y)) < r) | (anorm(np.array(p2) - (x, y)) < r)
- idxs = np.where(m)[0]
- kp1s, kp2s = [], []
- for i in idxs:
- (x1, y1), (x2, y2) = p1[i], p2[i]
- col = (red, green)[status[i][0]]
- cv.line(cur_vis, (x1, y1), (x2, y2), col)
- kp1, kp2 = kp_pairs[i]
- kp1s.append(kp1)
- kp2s.append(kp2)
- cur_vis = cv.drawKeypoints(cur_vis, kp1s, None, flags=4, color=kp_color)
- cur_vis[:,w1:] = cv.drawKeypoints(cur_vis[:,w1:], kp2s, None, flags=4, color=kp_color)
- cv.imshow(win, cur_vis)
- cv.setMouseCallback(win, onmouse)
- return vis
- def main():
- import sys, getopt
- opts, args = getopt.getopt(sys.argv[1:], '', ['feature='])
- opts = dict(opts)
- feature_name = opts.get('--feature', 'brisk')
- try:
- fn1, fn2 = args
- except:
- fn1 = 'box.png'
- fn2 = 'box_in_scene.png'
- img1 = cv.imread(cv.samples.findFile(fn1), cv.IMREAD_GRAYSCALE)
- img2 = cv.imread(cv.samples.findFile(fn2), cv.IMREAD_GRAYSCALE)
- detector, matcher = init_feature(feature_name)
- if img1 is None:
- print('Failed to load fn1:', fn1)
- sys.exit(1)
- if img2 is None:
- print('Failed to load fn2:', fn2)
- sys.exit(1)
- if detector is None:
- print('unknown feature:', feature_name)
- sys.exit(1)
- print('using', feature_name)
- kp1, desc1 = detector.detectAndCompute(img1, None)
- kp2, desc2 = detector.detectAndCompute(img2, None)
- print('img1 - %d features, img2 - %d features' % (len(kp1), len(kp2)))
- def match_and_draw(win):
- print('matching...')
- raw_matches = matcher.knnMatch(desc1, trainDescriptors = desc2, k = 2) #2
- p1, p2, kp_pairs = filter_matches(kp1, kp2, raw_matches)
- if len(p1) >= 4:
- H, status = cv.findHomography(p1, p2, cv.RANSAC, 5.0)
- print('%d / %d inliers/matched' % (np.sum(status), len(status)))
- else:
- H, status = None, None
- print('%d matches found, not enough for homography estimation' % len(p1))
- _vis = explore_match(win, img1, img2, kp_pairs, status, H)
- match_and_draw('find_obj')
- cv.waitKey()
- print('Done')
- if __name__ == '__main__':
- print(__doc__)
- main()
- cv.destroyAllWindows()
|