123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109 |
- #!/usr/bin/env python
- '''
- Digit recognition from video.
- Run digits.py before, to train and save the SVM.
- Usage:
- digits_video.py [{camera_id|video_file}]
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import numpy as np
- import cv2 as cv
- # built-in modules
- import os
- import sys
- # local modules
- import video
- from common import mosaic
- from digits import *
- def main():
- try:
- src = sys.argv[1]
- except:
- src = 0
- cap = video.create_capture(src, fallback='synth:bg={}:noise=0.05'.format(cv.samples.findFile('sudoku.png')))
- classifier_fn = 'digits_svm.dat'
- if not os.path.exists(classifier_fn):
- print('"%s" not found, run digits.py first' % classifier_fn)
- return
- model = cv.ml.SVM_load(classifier_fn)
- while True:
- _ret, frame = cap.read()
- gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
- bin = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY_INV, 31, 10)
- bin = cv.medianBlur(bin, 3)
- contours, heirs = cv.findContours( bin.copy(), cv.RETR_CCOMP, cv.CHAIN_APPROX_SIMPLE)
- try:
- heirs = heirs[0]
- except:
- heirs = []
- for cnt, heir in zip(contours, heirs):
- _, _, _, outer_i = heir
- if outer_i >= 0:
- continue
- x, y, w, h = cv.boundingRect(cnt)
- if not (16 <= h <= 64 and w <= 1.2*h):
- continue
- pad = max(h-w, 0)
- x, w = x - (pad // 2), w + pad
- cv.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0))
- bin_roi = bin[y:,x:][:h,:w]
- m = bin_roi != 0
- if not 0.1 < m.mean() < 0.4:
- continue
- '''
- gray_roi = gray[y:,x:][:h,:w]
- v_in, v_out = gray_roi[m], gray_roi[~m]
- if v_out.std() > 10.0:
- continue
- s = "%f, %f" % (abs(v_in.mean() - v_out.mean()), v_out.std())
- cv.putText(frame, s, (x, y), cv.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1)
- '''
- s = 1.5*float(h)/SZ
- m = cv.moments(bin_roi)
- c1 = np.float32([m['m10'], m['m01']]) / m['m00']
- c0 = np.float32([SZ/2, SZ/2])
- t = c1 - s*c0
- A = np.zeros((2, 3), np.float32)
- A[:,:2] = np.eye(2)*s
- A[:,2] = t
- bin_norm = cv.warpAffine(bin_roi, A, (SZ, SZ), flags=cv.WARP_INVERSE_MAP | cv.INTER_LINEAR)
- bin_norm = deskew(bin_norm)
- if x+w+SZ < frame.shape[1] and y+SZ < frame.shape[0]:
- frame[y:,x+w:][:SZ, :SZ] = bin_norm[...,np.newaxis]
- sample = preprocess_hog([bin_norm])
- digit = model.predict(sample)[1].ravel()
- cv.putText(frame, '%d'%digit, (x, y), cv.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1)
- cv.imshow('frame', frame)
- cv.imshow('bin', bin)
- ch = cv.waitKey(1)
- if ch == 27:
- break
- print('Done')
- if __name__ == '__main__':
- print(__doc__)
- main()
- cv.destroyAllWindows()
|