123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237 |
- #!/usr/bin/env python
- '''
- This module contains some common routines used by other samples.
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import sys
- PY3 = sys.version_info[0] == 3
- if PY3:
- from functools import reduce
- import numpy as np
- import cv2 as cv
- # built-in modules
- import os
- import itertools as it
- from contextlib import contextmanager
- image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm']
- class Bunch(object):
- def __init__(self, **kw):
- self.__dict__.update(kw)
- def __str__(self):
- return str(self.__dict__)
- def splitfn(fn):
- path, fn = os.path.split(fn)
- name, ext = os.path.splitext(fn)
- return path, name, ext
- def anorm2(a):
- return (a*a).sum(-1)
- def anorm(a):
- return np.sqrt( anorm2(a) )
- def homotrans(H, x, y):
- xs = H[0, 0]*x + H[0, 1]*y + H[0, 2]
- ys = H[1, 0]*x + H[1, 1]*y + H[1, 2]
- s = H[2, 0]*x + H[2, 1]*y + H[2, 2]
- return xs/s, ys/s
- def to_rect(a):
- a = np.ravel(a)
- if len(a) == 2:
- a = (0, 0, a[0], a[1])
- return np.array(a, np.float64).reshape(2, 2)
- def rect2rect_mtx(src, dst):
- src, dst = to_rect(src), to_rect(dst)
- cx, cy = (dst[1] - dst[0]) / (src[1] - src[0])
- tx, ty = dst[0] - src[0] * (cx, cy)
- M = np.float64([[ cx, 0, tx],
- [ 0, cy, ty],
- [ 0, 0, 1]])
- return M
- def lookat(eye, target, up = (0, 0, 1)):
- fwd = np.asarray(target, np.float64) - eye
- fwd /= anorm(fwd)
- right = np.cross(fwd, up)
- right /= anorm(right)
- down = np.cross(fwd, right)
- R = np.float64([right, down, fwd])
- tvec = -np.dot(R, eye)
- return R, tvec
- def mtx2rvec(R):
- w, u, vt = cv.SVDecomp(R - np.eye(3))
- p = vt[0] + u[:,0]*w[0] # same as np.dot(R, vt[0])
- c = np.dot(vt[0], p)
- s = np.dot(vt[1], p)
- axis = np.cross(vt[0], vt[1])
- return axis * np.arctan2(s, c)
- def draw_str(dst, target, s):
- x, y = target
- cv.putText(dst, s, (x+1, y+1), cv.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness = 2, lineType=cv.LINE_AA)
- cv.putText(dst, s, (x, y), cv.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv.LINE_AA)
- class Sketcher:
- def __init__(self, windowname, dests, colors_func):
- self.prev_pt = None
- self.windowname = windowname
- self.dests = dests
- self.colors_func = colors_func
- self.dirty = False
- self.show()
- cv.setMouseCallback(self.windowname, self.on_mouse)
- def show(self):
- cv.imshow(self.windowname, self.dests[0])
- def on_mouse(self, event, x, y, flags, param):
- pt = (x, y)
- if event == cv.EVENT_LBUTTONDOWN:
- self.prev_pt = pt
- elif event == cv.EVENT_LBUTTONUP:
- self.prev_pt = None
- if self.prev_pt and flags & cv.EVENT_FLAG_LBUTTON:
- for dst, color in zip(self.dests, self.colors_func()):
- cv.line(dst, self.prev_pt, pt, color, 5)
- self.dirty = True
- self.prev_pt = pt
- self.show()
- # palette data from matplotlib/_cm.py
- _jet_data = {'red': ((0., 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89,1, 1),
- (1, 0.5, 0.5)),
- 'green': ((0., 0, 0), (0.125,0, 0), (0.375,1, 1), (0.64,1, 1),
- (0.91,0,0), (1, 0, 0)),
- 'blue': ((0., 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65,0, 0),
- (1, 0, 0))}
- cmap_data = { 'jet' : _jet_data }
- def make_cmap(name, n=256):
- data = cmap_data[name]
- xs = np.linspace(0.0, 1.0, n)
- channels = []
- eps = 1e-6
- for ch_name in ['blue', 'green', 'red']:
- ch_data = data[ch_name]
- xp, yp = [], []
- for x, y1, y2 in ch_data:
- xp += [x, x+eps]
- yp += [y1, y2]
- ch = np.interp(xs, xp, yp)
- channels.append(ch)
- return np.uint8(np.array(channels).T*255)
- def nothing(*arg, **kw):
- pass
- def clock():
- return cv.getTickCount() / cv.getTickFrequency()
- @contextmanager
- def Timer(msg):
- print(msg, '...',)
- start = clock()
- try:
- yield
- finally:
- print("%.2f ms" % ((clock()-start)*1000))
- class StatValue:
- def __init__(self, smooth_coef = 0.5):
- self.value = None
- self.smooth_coef = smooth_coef
- def update(self, v):
- if self.value is None:
- self.value = v
- else:
- c = self.smooth_coef
- self.value = c * self.value + (1.0-c) * v
- class RectSelector:
- def __init__(self, win, callback):
- self.win = win
- self.callback = callback
- cv.setMouseCallback(win, self.onmouse)
- self.drag_start = None
- self.drag_rect = None
- def onmouse(self, event, x, y, flags, param):
- x, y = np.int16([x, y]) # BUG
- if event == cv.EVENT_LBUTTONDOWN:
- self.drag_start = (x, y)
- return
- if self.drag_start:
- if flags & cv.EVENT_FLAG_LBUTTON:
- xo, yo = self.drag_start
- x0, y0 = np.minimum([xo, yo], [x, y])
- x1, y1 = np.maximum([xo, yo], [x, y])
- self.drag_rect = None
- if x1-x0 > 0 and y1-y0 > 0:
- self.drag_rect = (x0, y0, x1, y1)
- else:
- rect = self.drag_rect
- self.drag_start = None
- self.drag_rect = None
- if rect:
- self.callback(rect)
- def draw(self, vis):
- if not self.drag_rect:
- return False
- x0, y0, x1, y1 = self.drag_rect
- cv.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2)
- return True
- @property
- def dragging(self):
- return self.drag_rect is not None
- def grouper(n, iterable, fillvalue=None):
- '''grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx'''
- args = [iter(iterable)] * n
- if PY3:
- output = it.zip_longest(fillvalue=fillvalue, *args)
- else:
- output = it.izip_longest(fillvalue=fillvalue, *args)
- return output
- def mosaic(w, imgs):
- '''Make a grid from images.
- w -- number of grid columns
- imgs -- images (must have same size and format)
- '''
- imgs = iter(imgs)
- if PY3:
- img0 = next(imgs)
- else:
- img0 = imgs.next()
- pad = np.zeros_like(img0)
- imgs = it.chain([img0], imgs)
- rows = grouper(w, imgs, pad)
- return np.vstack(list(map(np.hstack, rows)))
- def getsize(img):
- h, w = img.shape[:2]
- return w, h
- def mdot(*args):
- return reduce(np.dot, args)
- def draw_keypoints(vis, keypoints, color = (0, 255, 255)):
- for kp in keypoints:
- x, y = kp.pt
- cv.circle(vis, (int(x), int(y)), 2, color)
|