123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- #!/usr/bin/env python
- '''
- Camshift tracker
- ================
- This is a demo that shows mean-shift based tracking
- You select a color objects such as your face and it tracks it.
- This reads from video camera (0 by default, or the camera number the user enters)
- [1] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.7673
- Usage:
- ------
- camshift.py [<video source>]
- To initialize tracking, select the object with mouse
- Keys:
- -----
- ESC - exit
- b - toggle back-projected probability visualization
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import sys
- PY3 = sys.version_info[0] == 3
- if PY3:
- xrange = range
- import numpy as np
- import cv2 as cv
- # local module
- import video
- from video import presets
- class App(object):
- def __init__(self, video_src):
- self.cam = video.create_capture(video_src, presets['cube'])
- _ret, self.frame = self.cam.read()
- cv.namedWindow('camshift')
- cv.setMouseCallback('camshift', self.onmouse)
- self.selection = None
- self.drag_start = None
- self.show_backproj = False
- self.track_window = None
- def onmouse(self, event, x, y, flags, param):
- if event == cv.EVENT_LBUTTONDOWN:
- self.drag_start = (x, y)
- self.track_window = None
- if self.drag_start:
- xmin = min(x, self.drag_start[0])
- ymin = min(y, self.drag_start[1])
- xmax = max(x, self.drag_start[0])
- ymax = max(y, self.drag_start[1])
- self.selection = (xmin, ymin, xmax, ymax)
- if event == cv.EVENT_LBUTTONUP:
- self.drag_start = None
- self.track_window = (xmin, ymin, xmax - xmin, ymax - ymin)
- def show_hist(self):
- bin_count = self.hist.shape[0]
- bin_w = 24
- img = np.zeros((256, bin_count*bin_w, 3), np.uint8)
- for i in xrange(bin_count):
- h = int(self.hist[i])
- cv.rectangle(img, (i*bin_w+2, 255), ((i+1)*bin_w-2, 255-h), (int(180.0*i/bin_count), 255, 255), -1)
- img = cv.cvtColor(img, cv.COLOR_HSV2BGR)
- cv.imshow('hist', img)
- def run(self):
- while True:
- _ret, self.frame = self.cam.read()
- vis = self.frame.copy()
- hsv = cv.cvtColor(self.frame, cv.COLOR_BGR2HSV)
- mask = cv.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.)))
- if self.selection:
- x0, y0, x1, y1 = self.selection
- hsv_roi = hsv[y0:y1, x0:x1]
- mask_roi = mask[y0:y1, x0:x1]
- hist = cv.calcHist( [hsv_roi], [0], mask_roi, [16], [0, 180] )
- cv.normalize(hist, hist, 0, 255, cv.NORM_MINMAX)
- self.hist = hist.reshape(-1)
- self.show_hist()
- vis_roi = vis[y0:y1, x0:x1]
- cv.bitwise_not(vis_roi, vis_roi)
- vis[mask == 0] = 0
- if self.track_window and self.track_window[2] > 0 and self.track_window[3] > 0:
- self.selection = None
- prob = cv.calcBackProject([hsv], [0], self.hist, [0, 180], 1)
- prob &= mask
- term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 )
- track_box, self.track_window = cv.CamShift(prob, self.track_window, term_crit)
- if self.show_backproj:
- vis[:] = prob[...,np.newaxis]
- try:
- cv.ellipse(vis, track_box, (0, 0, 255), 2)
- except:
- print(track_box)
- cv.imshow('camshift', vis)
- ch = cv.waitKey(5)
- if ch == 27:
- break
- if ch == ord('b'):
- self.show_backproj = not self.show_backproj
- cv.destroyAllWindows()
- if __name__ == '__main__':
- print(__doc__)
- import sys
- try:
- video_src = sys.argv[1]
- except:
- video_src = 0
- App(video_src).run()
|