123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331 |
- #include <iostream>
- #include <vector>
- #include <opencv2/core.hpp>
- #include <opencv2/core/utility.hpp>
- #include <opencv2/imgproc.hpp>
- #include <opencv2/highgui.hpp>
- #include <opencv2/video.hpp>
- #include <opencv2/cudaoptflow.hpp>
- #include <opencv2/cudaimgproc.hpp>
- #include <opencv2/cudaarithm.hpp>
- using namespace std;
- using namespace cv;
- using namespace cv::cuda;
- static void download(const GpuMat& d_mat, vector<Point2f>& vec)
- {
- vec.resize(d_mat.cols);
- Mat mat(1, d_mat.cols, CV_32FC2, (void*)&vec[0]);
- d_mat.download(mat);
- }
- static void download(const GpuMat& d_mat, vector<uchar>& vec)
- {
- vec.resize(d_mat.cols);
- Mat mat(1, d_mat.cols, CV_8UC1, (void*)&vec[0]);
- d_mat.download(mat);
- }
- static void drawArrows(Mat& frame, const vector<Point2f>& prevPts, const vector<Point2f>& nextPts, const vector<uchar>& status, Scalar line_color = Scalar(0, 0, 255))
- {
- for (size_t i = 0; i < prevPts.size(); ++i)
- {
- if (status[i])
- {
- int line_thickness = 1;
- Point p = prevPts[i];
- Point q = nextPts[i];
- double angle = atan2((double) p.y - q.y, (double) p.x - q.x);
- double hypotenuse = sqrt( (double)(p.y - q.y)*(p.y - q.y) + (double)(p.x - q.x)*(p.x - q.x) );
- if (hypotenuse < 1.0)
- continue;
- // Here we lengthen the arrow by a factor of three.
- q.x = (int) (p.x - 3 * hypotenuse * cos(angle));
- q.y = (int) (p.y - 3 * hypotenuse * sin(angle));
- // Now we draw the main line of the arrow.
- line(frame, p, q, line_color, line_thickness);
- // Now draw the tips of the arrow. I do some scaling so that the
- // tips look proportional to the main line of the arrow.
- p.x = (int) (q.x + 9 * cos(angle + CV_PI / 4));
- p.y = (int) (q.y + 9 * sin(angle + CV_PI / 4));
- line(frame, p, q, line_color, line_thickness);
- p.x = (int) (q.x + 9 * cos(angle - CV_PI / 4));
- p.y = (int) (q.y + 9 * sin(angle - CV_PI / 4));
- line(frame, p, q, line_color, line_thickness);
- }
- }
- }
- inline bool isFlowCorrect(Point2f u)
- {
- return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9;
- }
- static Vec3b computeColor(float fx, float fy)
- {
- static bool first = true;
- // relative lengths of color transitions:
- // these are chosen based on perceptual similarity
- // (e.g. one can distinguish more shades between red and yellow
- // than between yellow and green)
- const int RY = 15;
- const int YG = 6;
- const int GC = 4;
- const int CB = 11;
- const int BM = 13;
- const int MR = 6;
- const int NCOLS = RY + YG + GC + CB + BM + MR;
- static Vec3i colorWheel[NCOLS];
- if (first)
- {
- int k = 0;
- for (int i = 0; i < RY; ++i, ++k)
- colorWheel[k] = Vec3i(255, 255 * i / RY, 0);
- for (int i = 0; i < YG; ++i, ++k)
- colorWheel[k] = Vec3i(255 - 255 * i / YG, 255, 0);
- for (int i = 0; i < GC; ++i, ++k)
- colorWheel[k] = Vec3i(0, 255, 255 * i / GC);
- for (int i = 0; i < CB; ++i, ++k)
- colorWheel[k] = Vec3i(0, 255 - 255 * i / CB, 255);
- for (int i = 0; i < BM; ++i, ++k)
- colorWheel[k] = Vec3i(255 * i / BM, 0, 255);
- for (int i = 0; i < MR; ++i, ++k)
- colorWheel[k] = Vec3i(255, 0, 255 - 255 * i / MR);
- first = false;
- }
- const float rad = sqrt(fx * fx + fy * fy);
- const float a = atan2(-fy, -fx) / (float)CV_PI;
- const float fk = (a + 1.0f) / 2.0f * (NCOLS - 1);
- const int k0 = static_cast<int>(fk);
- const int k1 = (k0 + 1) % NCOLS;
- const float f = fk - k0;
- Vec3b pix;
- for (int b = 0; b < 3; b++)
- {
- const float col0 = colorWheel[k0][b] / 255.0f;
- const float col1 = colorWheel[k1][b] / 255.0f;
- float col = (1 - f) * col0 + f * col1;
- if (rad <= 1)
- col = 1 - rad * (1 - col); // increase saturation with radius
- else
- col *= .75; // out of range
- pix[2 - b] = static_cast<uchar>(255.0 * col);
- }
- return pix;
- }
- static void drawOpticalFlow(const Mat_<float>& flowx, const Mat_<float>& flowy, Mat& dst, float maxmotion = -1)
- {
- dst.create(flowx.size(), CV_8UC3);
- dst.setTo(Scalar::all(0));
- // determine motion range:
- float maxrad = maxmotion;
- if (maxmotion <= 0)
- {
- maxrad = 1;
- for (int y = 0; y < flowx.rows; ++y)
- {
- for (int x = 0; x < flowx.cols; ++x)
- {
- Point2f u(flowx(y, x), flowy(y, x));
- if (!isFlowCorrect(u))
- continue;
- maxrad = max(maxrad, sqrt(u.x * u.x + u.y * u.y));
- }
- }
- }
- for (int y = 0; y < flowx.rows; ++y)
- {
- for (int x = 0; x < flowx.cols; ++x)
- {
- Point2f u(flowx(y, x), flowy(y, x));
- if (isFlowCorrect(u))
- dst.at<Vec3b>(y, x) = computeColor(u.x / maxrad, u.y / maxrad);
- }
- }
- }
- static void showFlow(const char* name, const GpuMat& d_flow)
- {
- GpuMat planes[2];
- cuda::split(d_flow, planes);
- Mat flowx(planes[0]);
- Mat flowy(planes[1]);
- Mat out;
- drawOpticalFlow(flowx, flowy, out, 10);
- imshow(name, out);
- }
- template <typename T> inline T clamp (T x, T a, T b)
- {
- return ((x) > (a) ? ((x) < (b) ? (x) : (b)) : (a));
- }
- template <typename T> inline T mapValue(T x, T a, T b, T c, T d)
- {
- x = clamp(x, a, b);
- return c + (d - c) * (x - a) / (b - a);
- }
- int main(int argc, const char* argv[])
- {
- const char* keys =
- "{ h help | | print help message }"
- "{ l left | ../data/pic1.png | specify left image }"
- "{ r right | ../data/pic2.png | specify right image }"
- "{ flow | sparse | specify flow type [PyrLK] }"
- "{ gray | | use grayscale sources [PyrLK Sparse] }"
- "{ win_size | 21 | specify windows size [PyrLK] }"
- "{ max_level | 3 | specify max level [PyrLK] }"
- "{ iters | 30 | specify iterations count [PyrLK] }"
- "{ points | 4000 | specify points count [GoodFeatureToTrack] }"
- "{ min_dist | 0 | specify minimal distance between points [GoodFeatureToTrack] }";
- CommandLineParser cmd(argc, argv, keys);
- if (cmd.has("help") || !cmd.check())
- {
- cmd.printMessage();
- cmd.printErrors();
- return 0;
- }
- string fname0 = cmd.get<string>("left");
- string fname1 = cmd.get<string>("right");
- if (fname0.empty() || fname1.empty())
- {
- cerr << "Missing input file names" << endl;
- return -1;
- }
- string flow_type = cmd.get<string>("flow");
- bool is_sparse = true;
- if (flow_type == "sparse")
- {
- is_sparse = true;
- }
- else if (flow_type == "dense")
- {
- is_sparse = false;
- }
- else
- {
- cerr << "please specify 'sparse' or 'dense' as flow type" << endl;
- return -1;
- }
- bool useGray = cmd.has("gray");
- int winSize = cmd.get<int>("win_size");
- int maxLevel = cmd.get<int>("max_level");
- int iters = cmd.get<int>("iters");
- int points = cmd.get<int>("points");
- double minDist = cmd.get<double>("min_dist");
- Mat frame0 = imread(fname0);
- Mat frame1 = imread(fname1);
- if (frame0.empty() || frame1.empty())
- {
- cout << "Can't load input images" << endl;
- return -1;
- }
- cout << "Image size : " << frame0.cols << " x " << frame0.rows << endl;
- cout << "Points count : " << points << endl;
- cout << endl;
- Mat frame0Gray;
- cv::cvtColor(frame0, frame0Gray, COLOR_BGR2GRAY);
- Mat frame1Gray;
- cv::cvtColor(frame1, frame1Gray, COLOR_BGR2GRAY);
- // goodFeaturesToTrack
- GpuMat d_frame0Gray(frame0Gray);
- GpuMat d_prevPts;
- Ptr<cuda::CornersDetector> detector = cuda::createGoodFeaturesToTrackDetector(d_frame0Gray.type(), points, 0.01, minDist);
- detector->detect(d_frame0Gray, d_prevPts);
- GpuMat d_frame0(frame0);
- GpuMat d_frame1(frame1);
- GpuMat d_frame1Gray(frame1Gray);
- GpuMat d_nextPts;
- GpuMat d_status;
- GpuMat d_flow(frame0.size(), CV_32FC2);
- if (is_sparse)
- {
- // Sparse
- Ptr<cuda::SparsePyrLKOpticalFlow> d_pyrLK_sparse = cuda::SparsePyrLKOpticalFlow::create(
- Size(winSize, winSize), maxLevel, iters);
- d_pyrLK_sparse->calc(useGray ? d_frame0Gray : d_frame0, useGray ? d_frame1Gray : d_frame1, d_prevPts, d_nextPts, d_status);
- // Draw arrows
- vector<Point2f> prevPts(d_prevPts.cols);
- download(d_prevPts, prevPts);
- vector<Point2f> nextPts(d_nextPts.cols);
- download(d_nextPts, nextPts);
- vector<uchar> status(d_status.cols);
- download(d_status, status);
- namedWindow("PyrLK [Sparse]", WINDOW_NORMAL);
- drawArrows(frame0, prevPts, nextPts, status, Scalar(255, 0, 0));
- imshow("PyrLK [Sparse]", frame0);
- }
- else
- {
- // Dense
- Ptr<cuda::DensePyrLKOpticalFlow> d_pyrLK_dense = cuda::DensePyrLKOpticalFlow::create(
- Size(winSize, winSize), maxLevel, iters);
- d_pyrLK_dense->calc(d_frame0Gray, d_frame1Gray, d_flow);
- // Draw flows
- namedWindow("PyrLK [Dense] Flow Field", WINDOW_NORMAL);
- showFlow("PyrLK [Dense] Flow Field", d_flow);
- }
- waitKey(0);
- return 0;
- }
|