123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445 |
- #include <iostream> // Console I/O
- #include <sstream> // String to number conversion
- #include <opencv2/core.hpp> // Basic OpenCV structures
- #include <opencv2/core/utility.hpp>
- #include <opencv2/imgproc.hpp>// Image processing methods for the CPU
- #include <opencv2/imgcodecs.hpp>// Read images
- // CUDA structures and methods
- #include <opencv2/cudaarithm.hpp>
- #include <opencv2/cudafilters.hpp>
- using namespace std;
- using namespace cv;
- double getPSNR(const Mat& I1, const Mat& I2); // CPU versions
- Scalar getMSSIM( const Mat& I1, const Mat& I2);
- double getPSNR_CUDA(const Mat& I1, const Mat& I2); // Basic CUDA versions
- Scalar getMSSIM_CUDA( const Mat& I1, const Mat& I2);
- //! [psnr]
- struct BufferPSNR // Optimized CUDA versions
- { // Data allocations are very expensive on CUDA. Use a buffer to solve: allocate once reuse later.
- cuda::GpuMat gI1, gI2, gs, t1,t2;
- cuda::GpuMat buf;
- };
- //! [psnr]
- double getPSNR_CUDA_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b);
- //! [ssim]
- struct BufferMSSIM // Optimized CUDA versions
- { // Data allocations are very expensive on CUDA. Use a buffer to solve: allocate once reuse later.
- cuda::GpuMat gI1, gI2, gs, t1,t2;
- cuda::GpuMat I1_2, I2_2, I1_I2;
- vector<cuda::GpuMat> vI1, vI2;
- cuda::GpuMat mu1, mu2;
- cuda::GpuMat mu1_2, mu2_2, mu1_mu2;
- cuda::GpuMat sigma1_2, sigma2_2, sigma12;
- cuda::GpuMat t3;
- cuda::GpuMat ssim_map;
- cuda::GpuMat buf;
- };
- //! [ssim]
- Scalar getMSSIM_CUDA_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b);
- static void help()
- {
- cout
- << "\n--------------------------------------------------------------------------" << endl
- << "This program shows how to port your CPU code to CUDA or write that from scratch." << endl
- << "You can see the performance improvement for the similarity check methods (PSNR and SSIM)." << endl
- << "Usage:" << endl
- << "./gpu-basics-similarity referenceImage comparedImage numberOfTimesToRunTest(like 10)." << endl
- << "--------------------------------------------------------------------------" << endl
- << endl;
- }
- int main(int, char *argv[])
- {
- help();
- Mat I1 = imread(argv[1]); // Read the two images
- Mat I2 = imread(argv[2]);
- if (!I1.data || !I2.data) // Check for success
- {
- cout << "Couldn't read the image";
- return 0;
- }
- BufferPSNR bufferPSNR;
- BufferMSSIM bufferMSSIM;
- int TIMES = 10;
- stringstream sstr(argv[3]);
- sstr >> TIMES;
- double time, result = 0;
- //------------------------------- PSNR CPU ----------------------------------------------------
- time = (double)getTickCount();
- for (int i = 0; i < TIMES; ++i)
- result = getPSNR(I1,I2);
- time = 1000*((double)getTickCount() - time)/getTickFrequency();
- time /= TIMES;
- cout << "Time of PSNR CPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
- << " With result of: " << result << endl;
- //------------------------------- PSNR CUDA ----------------------------------------------------
- time = (double)getTickCount();
- for (int i = 0; i < TIMES; ++i)
- result = getPSNR_CUDA(I1,I2);
- time = 1000*((double)getTickCount() - time)/getTickFrequency();
- time /= TIMES;
- cout << "Time of PSNR CUDA (averaged for " << TIMES << " runs): " << time << " milliseconds."
- << " With result of: " << result << endl;
- //------------------------------- PSNR CUDA Optimized--------------------------------------------
- time = (double)getTickCount(); // Initial call
- result = getPSNR_CUDA_optimized(I1, I2, bufferPSNR);
- time = 1000*((double)getTickCount() - time)/getTickFrequency();
- cout << "Initial call CUDA optimized: " << time <<" milliseconds."
- << " With result of: " << result << endl;
- time = (double)getTickCount();
- for (int i = 0; i < TIMES; ++i)
- result = getPSNR_CUDA_optimized(I1, I2, bufferPSNR);
- time = 1000*((double)getTickCount() - time)/getTickFrequency();
- time /= TIMES;
- cout << "Time of PSNR CUDA OPTIMIZED ( / " << TIMES << " runs): " << time
- << " milliseconds." << " With result of: " << result << endl << endl;
- //------------------------------- SSIM CPU -----------------------------------------------------
- Scalar x;
- time = (double)getTickCount();
- for (int i = 0; i < TIMES; ++i)
- x = getMSSIM(I1,I2);
- time = 1000*((double)getTickCount() - time)/getTickFrequency();
- time /= TIMES;
- cout << "Time of MSSIM CPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
- << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl;
- //------------------------------- SSIM CUDA -----------------------------------------------------
- time = (double)getTickCount();
- for (int i = 0; i < TIMES; ++i)
- x = getMSSIM_CUDA(I1,I2);
- time = 1000*((double)getTickCount() - time)/getTickFrequency();
- time /= TIMES;
- cout << "Time of MSSIM CUDA (averaged for " << TIMES << " runs): " << time << " milliseconds."
- << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl;
- //------------------------------- SSIM CUDA Optimized--------------------------------------------
- time = (double)getTickCount();
- x = getMSSIM_CUDA_optimized(I1,I2, bufferMSSIM);
- time = 1000*((double)getTickCount() - time)/getTickFrequency();
- cout << "Time of MSSIM CUDA Initial Call " << time << " milliseconds."
- << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl;
- time = (double)getTickCount();
- for (int i = 0; i < TIMES; ++i)
- x = getMSSIM_CUDA_optimized(I1,I2, bufferMSSIM);
- time = 1000*((double)getTickCount() - time)/getTickFrequency();
- time /= TIMES;
- cout << "Time of MSSIM CUDA OPTIMIZED ( / " << TIMES << " runs): " << time << " milliseconds."
- << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl << endl;
- return 0;
- }
- //! [getpsnr]
- double getPSNR(const Mat& I1, const Mat& I2)
- {
- Mat s1;
- absdiff(I1, I2, s1); // |I1 - I2|
- s1.convertTo(s1, CV_32F); // cannot make a square on 8 bits
- s1 = s1.mul(s1); // |I1 - I2|^2
- Scalar s = sum(s1); // sum elements per channel
- double sse = s.val[0] + s.val[1] + s.val[2]; // sum channels
- if( sse <= 1e-10) // for small values return zero
- return 0;
- else
- {
- double mse =sse /(double)(I1.channels() * I1.total());
- double psnr = 10.0*log10((255*255)/mse);
- return psnr;
- }
- }
- //! [getpsnr]
- //! [getpsnropt]
- double getPSNR_CUDA_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b)
- {
- b.gI1.upload(I1);
- b.gI2.upload(I2);
- b.gI1.convertTo(b.t1, CV_32F);
- b.gI2.convertTo(b.t2, CV_32F);
- cuda::absdiff(b.t1.reshape(1), b.t2.reshape(1), b.gs);
- cuda::multiply(b.gs, b.gs, b.gs);
- double sse = cuda::sum(b.gs, b.buf)[0];
- if( sse <= 1e-10) // for small values return zero
- return 0;
- else
- {
- double mse = sse /(double)(I1.channels() * I1.total());
- double psnr = 10.0*log10((255*255)/mse);
- return psnr;
- }
- }
- //! [getpsnropt]
- //! [getpsnrcuda]
- double getPSNR_CUDA(const Mat& I1, const Mat& I2)
- {
- cuda::GpuMat gI1, gI2, gs, t1,t2;
- gI1.upload(I1);
- gI2.upload(I2);
- gI1.convertTo(t1, CV_32F);
- gI2.convertTo(t2, CV_32F);
- cuda::absdiff(t1.reshape(1), t2.reshape(1), gs);
- cuda::multiply(gs, gs, gs);
- Scalar s = cuda::sum(gs);
- double sse = s.val[0] + s.val[1] + s.val[2];
- if( sse <= 1e-10) // for small values return zero
- return 0;
- else
- {
- double mse =sse /(double)(gI1.channels() * I1.total());
- double psnr = 10.0*log10((255*255)/mse);
- return psnr;
- }
- }
- //! [getpsnrcuda]
- //! [getssim]
- Scalar getMSSIM( const Mat& i1, const Mat& i2)
- {
- const double C1 = 6.5025, C2 = 58.5225;
- /***************************** INITS **********************************/
- int d = CV_32F;
- Mat I1, I2;
- i1.convertTo(I1, d); // cannot calculate on one byte large values
- i2.convertTo(I2, d);
- Mat I2_2 = I2.mul(I2); // I2^2
- Mat I1_2 = I1.mul(I1); // I1^2
- Mat I1_I2 = I1.mul(I2); // I1 * I2
- /*************************** END INITS **********************************/
- Mat mu1, mu2; // PRELIMINARY COMPUTING
- GaussianBlur(I1, mu1, Size(11, 11), 1.5);
- GaussianBlur(I2, mu2, Size(11, 11), 1.5);
- Mat mu1_2 = mu1.mul(mu1);
- Mat mu2_2 = mu2.mul(mu2);
- Mat mu1_mu2 = mu1.mul(mu2);
- Mat sigma1_2, sigma2_2, sigma12;
- GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
- sigma1_2 -= mu1_2;
- GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5);
- sigma2_2 -= mu2_2;
- GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5);
- sigma12 -= mu1_mu2;
- ///////////////////////////////// FORMULA ////////////////////////////////
- Mat t1, t2, t3;
- t1 = 2 * mu1_mu2 + C1;
- t2 = 2 * sigma12 + C2;
- t3 = t1.mul(t2); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
- t1 = mu1_2 + mu2_2 + C1;
- t2 = sigma1_2 + sigma2_2 + C2;
- t1 = t1.mul(t2); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
- Mat ssim_map;
- divide(t3, t1, ssim_map); // ssim_map = t3./t1;
- Scalar mssim = mean( ssim_map ); // mssim = average of ssim map
- return mssim;
- }
- //! [getssim]
- //! [getssimcuda]
- Scalar getMSSIM_CUDA( const Mat& i1, const Mat& i2)
- {
- const float C1 = 6.5025f, C2 = 58.5225f;
- /***************************** INITS **********************************/
- cuda::GpuMat gI1, gI2, gs1, tmp1,tmp2;
- gI1.upload(i1);
- gI2.upload(i2);
- gI1.convertTo(tmp1, CV_MAKE_TYPE(CV_32F, gI1.channels()));
- gI2.convertTo(tmp2, CV_MAKE_TYPE(CV_32F, gI2.channels()));
- vector<cuda::GpuMat> vI1, vI2;
- cuda::split(tmp1, vI1);
- cuda::split(tmp2, vI2);
- Scalar mssim;
- Ptr<cuda::Filter> gauss = cuda::createGaussianFilter(vI2[0].type(), -1, Size(11, 11), 1.5);
- for( int i = 0; i < gI1.channels(); ++i )
- {
- cuda::GpuMat I2_2, I1_2, I1_I2;
- cuda::multiply(vI2[i], vI2[i], I2_2); // I2^2
- cuda::multiply(vI1[i], vI1[i], I1_2); // I1^2
- cuda::multiply(vI1[i], vI2[i], I1_I2); // I1 * I2
- /*************************** END INITS **********************************/
- cuda::GpuMat mu1, mu2; // PRELIMINARY COMPUTING
- gauss->apply(vI1[i], mu1);
- gauss->apply(vI2[i], mu2);
- cuda::GpuMat mu1_2, mu2_2, mu1_mu2;
- cuda::multiply(mu1, mu1, mu1_2);
- cuda::multiply(mu2, mu2, mu2_2);
- cuda::multiply(mu1, mu2, mu1_mu2);
- cuda::GpuMat sigma1_2, sigma2_2, sigma12;
- gauss->apply(I1_2, sigma1_2);
- cuda::subtract(sigma1_2, mu1_2, sigma1_2); // sigma1_2 -= mu1_2;
- gauss->apply(I2_2, sigma2_2);
- cuda::subtract(sigma2_2, mu2_2, sigma2_2); // sigma2_2 -= mu2_2;
- gauss->apply(I1_I2, sigma12);
- cuda::subtract(sigma12, mu1_mu2, sigma12); // sigma12 -= mu1_mu2;
- ///////////////////////////////// FORMULA ////////////////////////////////
- cuda::GpuMat t1, t2, t3;
- mu1_mu2.convertTo(t1, -1, 2, C1); // t1 = 2 * mu1_mu2 + C1;
- sigma12.convertTo(t2, -1, 2, C2); // t2 = 2 * sigma12 + C2;
- cuda::multiply(t1, t2, t3); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
- cuda::addWeighted(mu1_2, 1.0, mu2_2, 1.0, C1, t1); // t1 = mu1_2 + mu2_2 + C1;
- cuda::addWeighted(sigma1_2, 1.0, sigma2_2, 1.0, C2, t2); // t2 = sigma1_2 + sigma2_2 + C2;
- cuda::multiply(t1, t2, t1); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
- cuda::GpuMat ssim_map;
- cuda::divide(t3, t1, ssim_map); // ssim_map = t3./t1;
- Scalar s = cuda::sum(ssim_map);
- mssim.val[i] = s.val[0] / (ssim_map.rows * ssim_map.cols);
- }
- return mssim;
- }
- //! [getssimcuda]
- //! [getssimopt]
- Scalar getMSSIM_CUDA_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b)
- {
- const float C1 = 6.5025f, C2 = 58.5225f;
- /***************************** INITS **********************************/
- b.gI1.upload(i1);
- b.gI2.upload(i2);
- cuda::Stream stream;
- b.gI1.convertTo(b.t1, CV_32F, stream);
- b.gI2.convertTo(b.t2, CV_32F, stream);
- cuda::split(b.t1, b.vI1, stream);
- cuda::split(b.t2, b.vI2, stream);
- Scalar mssim;
- Ptr<cuda::Filter> gauss = cuda::createGaussianFilter(b.vI1[0].type(), -1, Size(11, 11), 1.5);
- for( int i = 0; i < b.gI1.channels(); ++i )
- {
- cuda::multiply(b.vI2[i], b.vI2[i], b.I2_2, 1, -1, stream); // I2^2
- cuda::multiply(b.vI1[i], b.vI1[i], b.I1_2, 1, -1, stream); // I1^2
- cuda::multiply(b.vI1[i], b.vI2[i], b.I1_I2, 1, -1, stream); // I1 * I2
- gauss->apply(b.vI1[i], b.mu1, stream);
- gauss->apply(b.vI2[i], b.mu2, stream);
- cuda::multiply(b.mu1, b.mu1, b.mu1_2, 1, -1, stream);
- cuda::multiply(b.mu2, b.mu2, b.mu2_2, 1, -1, stream);
- cuda::multiply(b.mu1, b.mu2, b.mu1_mu2, 1, -1, stream);
- gauss->apply(b.I1_2, b.sigma1_2, stream);
- cuda::subtract(b.sigma1_2, b.mu1_2, b.sigma1_2, cuda::GpuMat(), -1, stream);
- //b.sigma1_2 -= b.mu1_2; - This would result in an extra data transfer operation
- gauss->apply(b.I2_2, b.sigma2_2, stream);
- cuda::subtract(b.sigma2_2, b.mu2_2, b.sigma2_2, cuda::GpuMat(), -1, stream);
- //b.sigma2_2 -= b.mu2_2;
- gauss->apply(b.I1_I2, b.sigma12, stream);
- cuda::subtract(b.sigma12, b.mu1_mu2, b.sigma12, cuda::GpuMat(), -1, stream);
- //b.sigma12 -= b.mu1_mu2;
- //here too it would be an extra data transfer due to call of operator*(Scalar, Mat)
- cuda::multiply(b.mu1_mu2, 2, b.t1, 1, -1, stream); //b.t1 = 2 * b.mu1_mu2 + C1;
- cuda::add(b.t1, C1, b.t1, cuda::GpuMat(), -1, stream);
- cuda::multiply(b.sigma12, 2, b.t2, 1, -1, stream); //b.t2 = 2 * b.sigma12 + C2;
- cuda::add(b.t2, C2, b.t2, cuda::GpuMat(), -12, stream);
- cuda::multiply(b.t1, b.t2, b.t3, 1, -1, stream); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
- cuda::add(b.mu1_2, b.mu2_2, b.t1, cuda::GpuMat(), -1, stream);
- cuda::add(b.t1, C1, b.t1, cuda::GpuMat(), -1, stream);
- cuda::add(b.sigma1_2, b.sigma2_2, b.t2, cuda::GpuMat(), -1, stream);
- cuda::add(b.t2, C2, b.t2, cuda::GpuMat(), -1, stream);
- cuda::multiply(b.t1, b.t2, b.t1, 1, -1, stream); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
- cuda::divide(b.t3, b.t1, b.ssim_map, 1, -1, stream); // ssim_map = t3./t1;
- stream.waitForCompletion();
- Scalar s = cuda::sum(b.ssim_map, b.buf);
- mssim.val[i] = s.val[0] / (b.ssim_map.rows * b.ssim_map.cols);
- }
- return mssim;
- }
- //! [getssimopt]
|