123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158 |
- // The "Square Detector" program.
- // It loads several images sequentially and tries to find squares in
- // each image
- #include "opencv2/core.hpp"
- #include "opencv2/imgproc.hpp"
- #include "opencv2/imgcodecs.hpp"
- #include "opencv2/highgui.hpp"
- #include <iostream>
- using namespace cv;
- using namespace std;
- static void help(const char* programName)
- {
- cout <<
- "\nA program using pyramid scaling, Canny, contours and contour simplification\n"
- "to find squares in a list of images (pic1-6.png)\n"
- "Returns sequence of squares detected on the image.\n"
- "Call:\n"
- "./" << programName << " [file_name (optional)]\n"
- "Using OpenCV version " << CV_VERSION << "\n" << endl;
- }
- int thresh = 50, N = 11;
- const char* wndname = "Square Detection Demo";
- // helper function:
- // finds a cosine of angle between vectors
- // from pt0->pt1 and from pt0->pt2
- static double angle( Point pt1, Point pt2, Point pt0 )
- {
- double dx1 = pt1.x - pt0.x;
- double dy1 = pt1.y - pt0.y;
- double dx2 = pt2.x - pt0.x;
- double dy2 = pt2.y - pt0.y;
- return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
- }
- // returns sequence of squares detected on the image.
- static void findSquares( const Mat& image, vector<vector<Point> >& squares )
- {
- squares.clear();
- Mat pyr, timg, gray0(image.size(), CV_8U), gray;
- // down-scale and upscale the image to filter out the noise
- pyrDown(image, pyr, Size(image.cols/2, image.rows/2));
- pyrUp(pyr, timg, image.size());
- vector<vector<Point> > contours;
- // find squares in every color plane of the image
- for( int c = 0; c < 3; c++ )
- {
- int ch[] = {c, 0};
- mixChannels(&timg, 1, &gray0, 1, ch, 1);
- // try several threshold levels
- for( int l = 0; l < N; l++ )
- {
- // hack: use Canny instead of zero threshold level.
- // Canny helps to catch squares with gradient shading
- if( l == 0 )
- {
- // apply Canny. Take the upper threshold from slider
- // and set the lower to 0 (which forces edges merging)
- Canny(gray0, gray, 0, thresh, 5);
- // dilate canny output to remove potential
- // holes between edge segments
- dilate(gray, gray, Mat(), Point(-1,-1));
- }
- else
- {
- // apply threshold if l!=0:
- // tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
- gray = gray0 >= (l+1)*255/N;
- }
- // find contours and store them all as a list
- findContours(gray, contours, RETR_LIST, CHAIN_APPROX_SIMPLE);
- vector<Point> approx;
- // test each contour
- for( size_t i = 0; i < contours.size(); i++ )
- {
- // approximate contour with accuracy proportional
- // to the contour perimeter
- approxPolyDP(contours[i], approx, arcLength(contours[i], true)*0.02, true);
- // square contours should have 4 vertices after approximation
- // relatively large area (to filter out noisy contours)
- // and be convex.
- // Note: absolute value of an area is used because
- // area may be positive or negative - in accordance with the
- // contour orientation
- if( approx.size() == 4 &&
- fabs(contourArea(approx)) > 1000 &&
- isContourConvex(approx) )
- {
- double maxCosine = 0;
- for( int j = 2; j < 5; j++ )
- {
- // find the maximum cosine of the angle between joint edges
- double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
- maxCosine = MAX(maxCosine, cosine);
- }
- // if cosines of all angles are small
- // (all angles are ~90 degree) then write quandrange
- // vertices to resultant sequence
- if( maxCosine < 0.3 )
- squares.push_back(approx);
- }
- }
- }
- }
- }
- int main(int argc, char** argv)
- {
- const char* names[] = { "pic1.png", "pic2.png", "pic3.png",
- "pic4.png", "pic5.png", "pic6.png", 0 };
- help(argv[0]);
- if( argc > 1)
- {
- names[0] = argv[1];
- names[1] = 0;
- }
- for( int i = 0; names[i] != 0; i++ )
- {
- string filename = samples::findFile(names[i]);
- Mat image = imread(filename, IMREAD_COLOR);
- if( image.empty() )
- {
- cout << "Couldn't load " << filename << endl;
- continue;
- }
- vector<vector<Point> > squares;
- findSquares(image, squares);
- polylines(image, squares, true, Scalar(0, 255, 0), 3, LINE_AA);
- imshow(wndname, image);
- int c = waitKey();
- if( c == 27 )
- break;
- }
- return 0;
- }
|