123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399 |
- #include "opencv2/core.hpp"
- #include "opencv2/imgproc.hpp"
- #include "opencv2/ml.hpp"
- #include "opencv2/highgui.hpp"
- #include <stdio.h>
- using namespace std;
- using namespace cv;
- using namespace cv::ml;
- const Scalar WHITE_COLOR = Scalar(255,255,255);
- const string winName = "points";
- const int testStep = 5;
- Mat img, imgDst;
- RNG rng;
- vector<Point> trainedPoints;
- vector<int> trainedPointsMarkers;
- const int MAX_CLASSES = 2;
- vector<Vec3b> classColors(MAX_CLASSES);
- int currentClass = 0;
- vector<int> classCounters(MAX_CLASSES);
- #define _NBC_ 1 // normal Bayessian classifier
- #define _KNN_ 1 // k nearest neighbors classifier
- #define _SVM_ 1 // support vectors machine
- #define _DT_ 1 // decision tree
- #define _BT_ 1 // ADA Boost
- #define _GBT_ 0 // gradient boosted trees
- #define _RF_ 1 // random forest
- #define _ANN_ 1 // artificial neural networks
- #define _EM_ 1 // expectation-maximization
- static void on_mouse( int event, int x, int y, int /*flags*/, void* )
- {
- if( img.empty() )
- return;
- int updateFlag = 0;
- if( event == EVENT_LBUTTONUP )
- {
- trainedPoints.push_back( Point(x,y) );
- trainedPointsMarkers.push_back( currentClass );
- classCounters[currentClass]++;
- updateFlag = true;
- }
- //draw
- if( updateFlag )
- {
- img = Scalar::all(0);
- // draw points
- for( size_t i = 0; i < trainedPoints.size(); i++ )
- {
- Vec3b c = classColors[trainedPointsMarkers[i]];
- circle( img, trainedPoints[i], 5, Scalar(c), -1 );
- }
- imshow( winName, img );
- }
- }
- static Mat prepare_train_samples(const vector<Point>& pts)
- {
- Mat samples;
- Mat(pts).reshape(1, (int)pts.size()).convertTo(samples, CV_32F);
- return samples;
- }
- static Ptr<TrainData> prepare_train_data()
- {
- Mat samples = prepare_train_samples(trainedPoints);
- return TrainData::create(samples, ROW_SAMPLE, Mat(trainedPointsMarkers));
- }
- static void predict_and_paint(const Ptr<StatModel>& model, Mat& dst)
- {
- Mat testSample( 1, 2, CV_32FC1 );
- for( int y = 0; y < img.rows; y += testStep )
- {
- for( int x = 0; x < img.cols; x += testStep )
- {
- testSample.at<float>(0) = (float)x;
- testSample.at<float>(1) = (float)y;
- int response = (int)model->predict( testSample );
- dst.at<Vec3b>(y, x) = classColors[response];
- }
- }
- }
- #if _NBC_
- static void find_decision_boundary_NBC()
- {
- // learn classifier
- Ptr<NormalBayesClassifier> normalBayesClassifier = StatModel::train<NormalBayesClassifier>(prepare_train_data());
- predict_and_paint(normalBayesClassifier, imgDst);
- }
- #endif
- #if _KNN_
- static void find_decision_boundary_KNN( int K )
- {
- Ptr<KNearest> knn = KNearest::create();
- knn->setDefaultK(K);
- knn->setIsClassifier(true);
- knn->train(prepare_train_data());
- predict_and_paint(knn, imgDst);
- }
- #endif
- #if _SVM_
- static void find_decision_boundary_SVM( double C )
- {
- Ptr<SVM> svm = SVM::create();
- svm->setType(SVM::C_SVC);
- svm->setKernel(SVM::POLY); //SVM::LINEAR;
- svm->setDegree(0.5);
- svm->setGamma(1);
- svm->setCoef0(1);
- svm->setNu(0.5);
- svm->setP(0);
- svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 1000, 0.01));
- svm->setC(C);
- svm->train(prepare_train_data());
- predict_and_paint(svm, imgDst);
- Mat sv = svm->getSupportVectors();
- for( int i = 0; i < sv.rows; i++ )
- {
- const float* supportVector = sv.ptr<float>(i);
- circle( imgDst, Point(saturate_cast<int>(supportVector[0]),saturate_cast<int>(supportVector[1])), 5, Scalar(255,255,255), -1 );
- }
- }
- #endif
- #if _DT_
- static void find_decision_boundary_DT()
- {
- Ptr<DTrees> dtree = DTrees::create();
- dtree->setMaxDepth(8);
- dtree->setMinSampleCount(2);
- dtree->setUseSurrogates(false);
- dtree->setCVFolds(0); // the number of cross-validation folds
- dtree->setUse1SERule(false);
- dtree->setTruncatePrunedTree(false);
- dtree->train(prepare_train_data());
- predict_and_paint(dtree, imgDst);
- }
- #endif
- #if _BT_
- static void find_decision_boundary_BT()
- {
- Ptr<Boost> boost = Boost::create();
- boost->setBoostType(Boost::DISCRETE);
- boost->setWeakCount(100);
- boost->setWeightTrimRate(0.95);
- boost->setMaxDepth(2);
- boost->setUseSurrogates(false);
- boost->setPriors(Mat());
- boost->train(prepare_train_data());
- predict_and_paint(boost, imgDst);
- }
- #endif
- #if _GBT_
- static void find_decision_boundary_GBT()
- {
- GBTrees::Params params( GBTrees::DEVIANCE_LOSS, // loss_function_type
- 100, // weak_count
- 0.1f, // shrinkage
- 1.0f, // subsample_portion
- 2, // max_depth
- false // use_surrogates )
- );
- Ptr<GBTrees> gbtrees = StatModel::train<GBTrees>(prepare_train_data(), params);
- predict_and_paint(gbtrees, imgDst);
- }
- #endif
- #if _RF_
- static void find_decision_boundary_RF()
- {
- Ptr<RTrees> rtrees = RTrees::create();
- rtrees->setMaxDepth(4);
- rtrees->setMinSampleCount(2);
- rtrees->setRegressionAccuracy(0.f);
- rtrees->setUseSurrogates(false);
- rtrees->setMaxCategories(16);
- rtrees->setPriors(Mat());
- rtrees->setCalculateVarImportance(false);
- rtrees->setActiveVarCount(1);
- rtrees->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 5, 0));
- rtrees->train(prepare_train_data());
- predict_and_paint(rtrees, imgDst);
- }
- #endif
- #if _ANN_
- static void find_decision_boundary_ANN( const Mat& layer_sizes )
- {
- Mat trainClasses = Mat::zeros( (int)trainedPoints.size(), (int)classColors.size(), CV_32FC1 );
- for( int i = 0; i < trainClasses.rows; i++ )
- {
- trainClasses.at<float>(i, trainedPointsMarkers[i]) = 1.f;
- }
- Mat samples = prepare_train_samples(trainedPoints);
- Ptr<TrainData> tdata = TrainData::create(samples, ROW_SAMPLE, trainClasses);
- Ptr<ANN_MLP> ann = ANN_MLP::create();
- ann->setLayerSizes(layer_sizes);
- ann->setActivationFunction(ANN_MLP::SIGMOID_SYM, 1, 1);
- ann->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 300, FLT_EPSILON));
- ann->setTrainMethod(ANN_MLP::BACKPROP, 0.001);
- ann->train(tdata);
- predict_and_paint(ann, imgDst);
- }
- #endif
- #if _EM_
- static void find_decision_boundary_EM()
- {
- img.copyTo( imgDst );
- Mat samples = prepare_train_samples(trainedPoints);
- int i, j, nmodels = (int)classColors.size();
- vector<Ptr<EM> > em_models(nmodels);
- Mat modelSamples;
- for( i = 0; i < nmodels; i++ )
- {
- const int componentCount = 3;
- modelSamples.release();
- for( j = 0; j < samples.rows; j++ )
- {
- if( trainedPointsMarkers[j] == i )
- modelSamples.push_back(samples.row(j));
- }
- // learn models
- if( !modelSamples.empty() )
- {
- Ptr<EM> em = EM::create();
- em->setClustersNumber(componentCount);
- em->setCovarianceMatrixType(EM::COV_MAT_DIAGONAL);
- em->trainEM(modelSamples, noArray(), noArray(), noArray());
- em_models[i] = em;
- }
- }
- // classify coordinate plane points using the bayes classifier, i.e.
- // y(x) = arg max_i=1_modelsCount likelihoods_i(x)
- Mat testSample(1, 2, CV_32FC1 );
- Mat logLikelihoods(1, nmodels, CV_64FC1, Scalar(-DBL_MAX));
- for( int y = 0; y < img.rows; y += testStep )
- {
- for( int x = 0; x < img.cols; x += testStep )
- {
- testSample.at<float>(0) = (float)x;
- testSample.at<float>(1) = (float)y;
- for( i = 0; i < nmodels; i++ )
- {
- if( !em_models[i].empty() )
- logLikelihoods.at<double>(i) = em_models[i]->predict2(testSample, noArray())[0];
- }
- Point maxLoc;
- minMaxLoc(logLikelihoods, 0, 0, 0, &maxLoc);
- imgDst.at<Vec3b>(y, x) = classColors[maxLoc.x];
- }
- }
- }
- #endif
- int main()
- {
- cout << "Use:" << endl
- << " key '0' .. '1' - switch to class #n" << endl
- << " left mouse button - to add new point;" << endl
- << " key 'r' - to run the ML model;" << endl
- << " key 'i' - to init (clear) the data." << endl << endl;
- cv::namedWindow( "points", 1 );
- img.create( 480, 640, CV_8UC3 );
- imgDst.create( 480, 640, CV_8UC3 );
- imshow( "points", img );
- setMouseCallback( "points", on_mouse );
- classColors[0] = Vec3b(0, 255, 0);
- classColors[1] = Vec3b(0, 0, 255);
- for(;;)
- {
- char key = (char)waitKey();
- if( key == 27 ) break;
- if( key == 'i' ) // init
- {
- img = Scalar::all(0);
- trainedPoints.clear();
- trainedPointsMarkers.clear();
- classCounters.assign(MAX_CLASSES, 0);
- imshow( winName, img );
- }
- if( key == '0' || key == '1' )
- {
- currentClass = key - '0';
- }
- if( key == 'r' ) // run
- {
- double minVal = 0;
- minMaxLoc(classCounters, &minVal, 0, 0, 0);
- if( minVal == 0 )
- {
- printf("each class should have at least 1 point\n");
- continue;
- }
- img.copyTo( imgDst );
- #if _NBC_
- find_decision_boundary_NBC();
- imshow( "NormalBayesClassifier", imgDst );
- #endif
- #if _KNN_
- find_decision_boundary_KNN( 3 );
- imshow( "kNN", imgDst );
- find_decision_boundary_KNN( 15 );
- imshow( "kNN2", imgDst );
- #endif
- #if _SVM_
- //(1)-(2)separable and not sets
- find_decision_boundary_SVM( 1 );
- imshow( "classificationSVM1", imgDst );
- find_decision_boundary_SVM( 10 );
- imshow( "classificationSVM2", imgDst );
- #endif
- #if _DT_
- find_decision_boundary_DT();
- imshow( "DT", imgDst );
- #endif
- #if _BT_
- find_decision_boundary_BT();
- imshow( "BT", imgDst);
- #endif
- #if _GBT_
- find_decision_boundary_GBT();
- imshow( "GBT", imgDst);
- #endif
- #if _RF_
- find_decision_boundary_RF();
- imshow( "RF", imgDst);
- #endif
- #if _ANN_
- Mat layer_sizes1( 1, 3, CV_32SC1 );
- layer_sizes1.at<int>(0) = 2;
- layer_sizes1.at<int>(1) = 5;
- layer_sizes1.at<int>(2) = (int)classColors.size();
- find_decision_boundary_ANN( layer_sizes1 );
- imshow( "ANN", imgDst );
- #endif
- #if _EM_
- find_decision_boundary_EM();
- imshow( "EM", imgDst );
- #endif
- }
- }
- return 0;
- }
|