123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127 |
- // Logistic Regression sample
- // AUTHOR: Rahul Kavi rahulkavi[at]live[at]com
- #include <iostream>
- #include <opencv2/core.hpp>
- #include <opencv2/ml.hpp>
- #include <opencv2/highgui.hpp>
- using namespace std;
- using namespace cv;
- using namespace cv::ml;
- static void showImage(const Mat &data, int columns, const String &name)
- {
- Mat bigImage;
- for(int i = 0; i < data.rows; ++i)
- {
- bigImage.push_back(data.row(i).reshape(0, columns));
- }
- imshow(name, bigImage.t());
- }
- static float calculateAccuracyPercent(const Mat &original, const Mat &predicted)
- {
- return 100 * (float)countNonZero(original == predicted) / predicted.rows;
- }
- int main()
- {
- const String filename = samples::findFile("data01.xml");
- cout << "**********************************************************************" << endl;
- cout << filename
- << " contains digits 0 and 1 of 20 samples each, collected on an Android device" << endl;
- cout << "Each of the collected images are of size 28 x 28 re-arranged to 1 x 784 matrix"
- << endl;
- cout << "**********************************************************************" << endl;
- Mat data, labels;
- {
- cout << "loading the dataset...";
- FileStorage f;
- if(f.open(filename, FileStorage::READ))
- {
- f["datamat"] >> data;
- f["labelsmat"] >> labels;
- f.release();
- }
- else
- {
- cerr << "file can not be opened: " << filename << endl;
- return 1;
- }
- data.convertTo(data, CV_32F);
- labels.convertTo(labels, CV_32F);
- cout << "read " << data.rows << " rows of data" << endl;
- }
- Mat data_train, data_test;
- Mat labels_train, labels_test;
- for(int i = 0; i < data.rows; i++)
- {
- if(i % 2 == 0)
- {
- data_train.push_back(data.row(i));
- labels_train.push_back(labels.row(i));
- }
- else
- {
- data_test.push_back(data.row(i));
- labels_test.push_back(labels.row(i));
- }
- }
- cout << "training/testing samples count: " << data_train.rows << "/" << data_test.rows << endl;
- // display sample image
- showImage(data_train, 28, "train data");
- showImage(data_test, 28, "test data");
- // simple case with batch gradient
- cout << "training...";
- //! [init]
- Ptr<LogisticRegression> lr1 = LogisticRegression::create();
- lr1->setLearningRate(0.001);
- lr1->setIterations(10);
- lr1->setRegularization(LogisticRegression::REG_L2);
- lr1->setTrainMethod(LogisticRegression::BATCH);
- lr1->setMiniBatchSize(1);
- //! [init]
- lr1->train(data_train, ROW_SAMPLE, labels_train);
- cout << "done!" << endl;
- cout << "predicting...";
- Mat responses;
- lr1->predict(data_test, responses);
- cout << "done!" << endl;
- // show prediction report
- cout << "original vs predicted:" << endl;
- labels_test.convertTo(labels_test, CV_32S);
- cout << labels_test.t() << endl;
- cout << responses.t() << endl;
- cout << "accuracy: " << calculateAccuracyPercent(labels_test, responses) << "%" << endl;
- // save the classifier
- const String saveFilename = "NewLR_Trained.xml";
- cout << "saving the classifier to " << saveFilename << endl;
- lr1->save(saveFilename);
- // load the classifier onto new object
- cout << "loading a new classifier from " << saveFilename << endl;
- Ptr<LogisticRegression> lr2 = StatModel::load<LogisticRegression>(saveFilename);
- // predict using loaded classifier
- cout << "predicting the dataset using the loaded classifier...";
- Mat responses2;
- lr2->predict(data_test, responses2);
- cout << "done!" << endl;
- // calculate accuracy
- cout << labels_test.t() << endl;
- cout << responses2.t() << endl;
- cout << "accuracy: " << calculateAccuracyPercent(labels_test, responses2) << "%" << endl;
- waitKey(0);
- return 0;
- }
|