123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315 |
- /********************************************************************************
- *
- *
- * This program is demonstration for ellipse fitting. Program finds
- * contours and approximate it by ellipses using three methods.
- * 1: OpenCV's original method fitEllipse which implements Fitzgibbon 1995 method.
- * 2: The Approximate Mean Square (AMS) method fitEllipseAMS proposed by Taubin 1991
- * 3: The Direct least square (Direct) method fitEllipseDirect proposed by Fitzgibbon1999.
- *
- * Trackbar specify threshold parameter.
- *
- * White lines is contours/input points and the true ellipse used to generate the data.
- * 1: Blue lines is fitting ellipses using openCV's original method.
- * 2: Green lines is fitting ellipses using the AMS method.
- * 3: Red lines is fitting ellipses using the Direct method.
- *
- *
- * Original Author: Denis Burenkov
- * AMS and Direct Methods Author: Jasper Shemilt
- *
- *
- ********************************************************************************/
- #include "opencv2/imgproc.hpp"
- #include "opencv2/imgcodecs.hpp"
- #include "opencv2/highgui.hpp"
- #include <iostream>
- using namespace cv;
- using namespace std;
- class canvas{
- public:
- bool setupQ;
- cv::Point origin;
- cv::Point corner;
- int minDims,maxDims;
- double scale;
- int rows, cols;
- cv::Mat img;
- void init(int minD, int maxD){
- // Initialise the canvas with minimum and maximum rows and column sizes.
- minDims = minD; maxDims = maxD;
- origin = cv::Point(0,0);
- corner = cv::Point(0,0);
- scale = 1.0;
- rows = 0;
- cols = 0;
- setupQ = false;
- }
- void stretch(cv::Point2f min, cv::Point2f max){
- // Stretch the canvas to include the points min and max.
- if(setupQ){
- if(corner.x < max.x){corner.x = (int)(max.x + 1.0);};
- if(corner.y < max.y){corner.y = (int)(max.y + 1.0);};
- if(origin.x > min.x){origin.x = (int) min.x;};
- if(origin.y > min.y){origin.y = (int) min.y;};
- } else {
- origin = cv::Point((int)min.x, (int)min.y);
- corner = cv::Point((int)(max.x + 1.0), (int)(max.y + 1.0));
- }
- int c = (int)(scale*((corner.x + 1.0) - origin.x));
- if(c<minDims){
- scale = scale * (double)minDims/(double)c;
- } else {
- if(c>maxDims){
- scale = scale * (double)maxDims/(double)c;
- }
- }
- int r = (int)(scale*((corner.y + 1.0) - origin.y));
- if(r<minDims){
- scale = scale * (double)minDims/(double)r;
- } else {
- if(r>maxDims){
- scale = scale * (double)maxDims/(double)r;
- }
- }
- cols = (int)(scale*((corner.x + 1.0) - origin.x));
- rows = (int)(scale*((corner.y + 1.0) - origin.y));
- setupQ = true;
- }
- void stretch(vector<Point2f> pts)
- { // Stretch the canvas so all the points pts are on the canvas.
- cv::Point2f min = pts[0];
- cv::Point2f max = pts[0];
- for(size_t i=1; i < pts.size(); i++){
- Point2f pnt = pts[i];
- if(max.x < pnt.x){max.x = pnt.x;};
- if(max.y < pnt.y){max.y = pnt.y;};
- if(min.x > pnt.x){min.x = pnt.x;};
- if(min.y > pnt.y){min.y = pnt.y;};
- };
- stretch(min, max);
- }
- void stretch(cv::RotatedRect box)
- { // Stretch the canvas so that the rectangle box is on the canvas.
- cv::Point2f min = box.center;
- cv::Point2f max = box.center;
- cv::Point2f vtx[4];
- box.points(vtx);
- for( int i = 0; i < 4; i++ ){
- cv::Point2f pnt = vtx[i];
- if(max.x < pnt.x){max.x = pnt.x;};
- if(max.y < pnt.y){max.y = pnt.y;};
- if(min.x > pnt.x){min.x = pnt.x;};
- if(min.y > pnt.y){min.y = pnt.y;};
- }
- stretch(min, max);
- }
- void drawEllipseWithBox(cv::RotatedRect box, cv::Scalar color, int lineThickness)
- {
- if(img.empty()){
- stretch(box);
- img = cv::Mat::zeros(rows,cols,CV_8UC3);
- }
- box.center = scale * cv::Point2f(box.center.x - origin.x, box.center.y - origin.y);
- box.size.width = (float)(scale * box.size.width);
- box.size.height = (float)(scale * box.size.height);
- ellipse(img, box, color, lineThickness, LINE_AA);
- Point2f vtx[4];
- box.points(vtx);
- for( int j = 0; j < 4; j++ ){
- line(img, vtx[j], vtx[(j+1)%4], color, lineThickness, LINE_AA);
- }
- }
- void drawPoints(vector<Point2f> pts, cv::Scalar color)
- {
- if(img.empty()){
- stretch(pts);
- img = cv::Mat::zeros(rows,cols,CV_8UC3);
- }
- for(size_t i=0; i < pts.size(); i++){
- Point2f pnt = scale * cv::Point2f(pts[i].x - origin.x, pts[i].y - origin.y);
- img.at<cv::Vec3b>(int(pnt.y), int(pnt.x))[0] = (uchar)color[0];
- img.at<cv::Vec3b>(int(pnt.y), int(pnt.x))[1] = (uchar)color[1];
- img.at<cv::Vec3b>(int(pnt.y), int(pnt.x))[2] = (uchar)color[2];
- };
- }
- void drawLabels( std::vector<std::string> text, std::vector<cv::Scalar> colors)
- {
- if(img.empty()){
- img = cv::Mat::zeros(rows,cols,CV_8UC3);
- }
- int vPos = 0;
- for (size_t i=0; i < text.size(); i++) {
- cv::Scalar color = colors[i];
- std::string txt = text[i];
- Size textsize = getTextSize(txt, FONT_HERSHEY_COMPLEX, 1, 1, 0);
- vPos += (int)(1.3 * textsize.height);
- Point org((img.cols - textsize.width), vPos);
- cv::putText(img, txt, org, FONT_HERSHEY_COMPLEX, 1, color, 1, LINE_8);
- }
- }
- };
- static void help(char** argv)
- {
- cout << "\nThis program is demonstration for ellipse fitting. The program finds\n"
- "contours and approximate it by ellipses. Three methods are used to find the \n"
- "elliptical fits: fitEllipse, fitEllipseAMS and fitEllipseDirect.\n"
- "Call:\n"
- << argv[0] << " [image_name -- Default ellipses.jpg]\n" << endl;
- }
- int sliderPos = 70;
- Mat image;
- bool fitEllipseQ, fitEllipseAMSQ, fitEllipseDirectQ;
- cv::Scalar fitEllipseColor = Scalar(255, 0, 0);
- cv::Scalar fitEllipseAMSColor = Scalar( 0,255, 0);
- cv::Scalar fitEllipseDirectColor = Scalar( 0, 0,255);
- cv::Scalar fitEllipseTrueColor = Scalar(255,255,255);
- void processImage(int, void*);
- int main( int argc, char** argv )
- {
- fitEllipseQ = true;
- fitEllipseAMSQ = true;
- fitEllipseDirectQ = true;
- cv::CommandLineParser parser(argc, argv,"{help h||}{@image|ellipses.jpg|}");
- if (parser.has("help"))
- {
- help(argv);
- return 0;
- }
- string filename = parser.get<string>("@image");
- image = imread(samples::findFile(filename), 0);
- if( image.empty() )
- {
- cout << "Couldn't open image " << filename << "\n";
- return 0;
- }
- imshow("source", image);
- namedWindow("result", WINDOW_NORMAL );
- // Create toolbars. HighGUI use.
- createTrackbar( "threshold", "result", &sliderPos, 255, processImage );
- processImage(0, 0);
- // Wait for a key stroke; the same function arranges events processing
- waitKey();
- return 0;
- }
- // Define trackbar callback function. This function finds contours,
- // draws them, and approximates by ellipses.
- void processImage(int /*h*/, void*)
- {
- RotatedRect box, boxAMS, boxDirect;
- vector<vector<Point> > contours;
- Mat bimage = image >= sliderPos;
- findContours(bimage, contours, RETR_LIST, CHAIN_APPROX_NONE);
- canvas paper;
- paper.init(int(0.8*MIN(bimage.rows, bimage.cols)), int(1.2*MAX(bimage.rows, bimage.cols)));
- paper.stretch(cv::Point2f(0.0f, 0.0f), cv::Point2f((float)(bimage.cols+2.0), (float)(bimage.rows+2.0)));
- std::vector<std::string> text;
- std::vector<cv::Scalar> color;
- if (fitEllipseQ) {
- text.push_back("OpenCV");
- color.push_back(fitEllipseColor);
- }
- if (fitEllipseAMSQ) {
- text.push_back("AMS");
- color.push_back(fitEllipseAMSColor);
- }
- if (fitEllipseDirectQ) {
- text.push_back("Direct");
- color.push_back(fitEllipseDirectColor);
- }
- paper.drawLabels(text, color);
- int margin = 2;
- vector< vector<Point2f> > points;
- for(size_t i = 0; i < contours.size(); i++)
- {
- size_t count = contours[i].size();
- if( count < 6 )
- continue;
- Mat pointsf;
- Mat(contours[i]).convertTo(pointsf, CV_32F);
- vector<Point2f>pts;
- for (int j = 0; j < pointsf.rows; j++) {
- Point2f pnt = Point2f(pointsf.at<float>(j,0), pointsf.at<float>(j,1));
- if ((pnt.x > margin && pnt.y > margin && pnt.x < bimage.cols-margin && pnt.y < bimage.rows-margin)) {
- if(j%20==0){
- pts.push_back(pnt);
- }
- }
- }
- points.push_back(pts);
- }
- for(size_t i = 0; i < points.size(); i++)
- {
- vector<Point2f> pts = points[i];
- if (pts.size()<=5) {
- continue;
- }
- if (fitEllipseQ) {
- box = fitEllipse(pts);
- if( MAX(box.size.width, box.size.height) > MIN(box.size.width, box.size.height)*30 ||
- MAX(box.size.width, box.size.height) <= 0 ||
- MIN(box.size.width, box.size.height) <= 0){continue;};
- }
- if (fitEllipseAMSQ) {
- boxAMS = fitEllipseAMS(pts);
- if( MAX(boxAMS.size.width, boxAMS.size.height) > MIN(boxAMS.size.width, boxAMS.size.height)*30 ||
- MAX(box.size.width, box.size.height) <= 0 ||
- MIN(box.size.width, box.size.height) <= 0){continue;};
- }
- if (fitEllipseDirectQ) {
- boxDirect = fitEllipseDirect(pts);
- if( MAX(boxDirect.size.width, boxDirect.size.height) > MIN(boxDirect.size.width, boxDirect.size.height)*30 ||
- MAX(box.size.width, box.size.height) <= 0 ||
- MIN(box.size.width, box.size.height) <= 0 ){continue;};
- }
- if (fitEllipseQ) {
- paper.drawEllipseWithBox(box, fitEllipseColor, 3);
- }
- if (fitEllipseAMSQ) {
- paper.drawEllipseWithBox(boxAMS, fitEllipseAMSColor, 2);
- }
- if (fitEllipseDirectQ) {
- paper.drawEllipseWithBox(boxDirect, fitEllipseDirectColor, 1);
- }
- paper.drawPoints(pts, cv::Scalar(255,255,255));
- }
- imshow("result", paper.img);
- }
|