123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375 |
- #include "opencv2/core.hpp"
- #include "opencv2/highgui.hpp"
- #include "opencv2/imgcodecs.hpp"
- #include "opencv2/imgproc.hpp"
- #include "opencv2/ml.hpp"
- #include <algorithm>
- #include <iostream>
- #include <vector>
- using namespace cv;
- using namespace std;
- const int SZ = 20; // size of each digit is SZ x SZ
- const int CLASS_N = 10;
- const char* DIGITS_FN = "digits.png";
- static void help(char** argv)
- {
- cout <<
- "\n"
- "SVM and KNearest digit recognition.\n"
- "\n"
- "Sample loads a dataset of handwritten digits from 'digits.png'.\n"
- "Then it trains a SVM and KNearest classifiers on it and evaluates\n"
- "their accuracy.\n"
- "\n"
- "Following preprocessing is applied to the dataset:\n"
- " - Moment-based image deskew (see deskew())\n"
- " - Digit images are split into 4 10x10 cells and 16-bin\n"
- " histogram of oriented gradients is computed for each\n"
- " cell\n"
- " - Transform histograms to space with Hellinger metric (see [1] (RootSIFT))\n"
- "\n"
- "\n"
- "[1] R. Arandjelovic, A. Zisserman\n"
- " \"Three things everyone should know to improve object retrieval\"\n"
- " http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf\n"
- "\n"
- "Usage:\n"
- << argv[0] << endl;
- }
- static void split2d(const Mat& image, const Size cell_size, vector<Mat>& cells)
- {
- int height = image.rows;
- int width = image.cols;
- int sx = cell_size.width;
- int sy = cell_size.height;
- cells.clear();
- for (int i = 0; i < height; i += sy)
- {
- for (int j = 0; j < width; j += sx)
- {
- cells.push_back(image(Rect(j, i, sx, sy)));
- }
- }
- }
- static void load_digits(const char* fn, vector<Mat>& digits, vector<int>& labels)
- {
- digits.clear();
- labels.clear();
- String filename = samples::findFile(fn);
- cout << "Loading " << filename << " ..." << endl;
- Mat digits_img = imread(filename, IMREAD_GRAYSCALE);
- split2d(digits_img, Size(SZ, SZ), digits);
- for (int i = 0; i < CLASS_N; i++)
- {
- for (size_t j = 0; j < digits.size() / CLASS_N; j++)
- {
- labels.push_back(i);
- }
- }
- }
- static void deskew(const Mat& img, Mat& deskewed_img)
- {
- Moments m = moments(img);
- if (abs(m.mu02) < 0.01)
- {
- deskewed_img = img.clone();
- return;
- }
- float skew = (float)(m.mu11 / m.mu02);
- float M_vals[2][3] = {{1, skew, -0.5f * SZ * skew}, {0, 1, 0}};
- Mat M(Size(3, 2), CV_32F);
- for (int i = 0; i < M.rows; i++)
- {
- for (int j = 0; j < M.cols; j++)
- {
- M.at<float>(i, j) = M_vals[i][j];
- }
- }
- warpAffine(img, deskewed_img, M, Size(SZ, SZ), WARP_INVERSE_MAP | INTER_LINEAR);
- }
- static void mosaic(const int width, const vector<Mat>& images, Mat& grid)
- {
- int mat_width = SZ * width;
- int mat_height = SZ * (int)ceil((double)images.size() / width);
- if (!images.empty())
- {
- grid = Mat(Size(mat_width, mat_height), images[0].type());
- for (size_t i = 0; i < images.size(); i++)
- {
- Mat location_on_grid = grid(Rect(SZ * ((int)i % width), SZ * ((int)i / width), SZ, SZ));
- images[i].copyTo(location_on_grid);
- }
- }
- }
- static void evaluate_model(const vector<float>& predictions, const vector<Mat>& digits, const vector<int>& labels, Mat& mos)
- {
- double err = 0;
- for (size_t i = 0; i < predictions.size(); i++)
- {
- if ((int)predictions[i] != labels[i])
- {
- err++;
- }
- }
- err /= predictions.size();
- cout << cv::format("error: %.2f %%", err * 100) << endl;
- int confusion[10][10] = {};
- for (size_t i = 0; i < labels.size(); i++)
- {
- confusion[labels[i]][(int)predictions[i]]++;
- }
- cout << "confusion matrix:" << endl;
- for (int i = 0; i < 10; i++)
- {
- for (int j = 0; j < 10; j++)
- {
- cout << cv::format("%2d ", confusion[i][j]);
- }
- cout << endl;
- }
- cout << endl;
- vector<Mat> vis;
- for (size_t i = 0; i < digits.size(); i++)
- {
- Mat img;
- cvtColor(digits[i], img, COLOR_GRAY2BGR);
- if ((int)predictions[i] != labels[i])
- {
- for (int j = 0; j < img.rows; j++)
- {
- for (int k = 0; k < img.cols; k++)
- {
- img.at<Vec3b>(j, k)[0] = 0;
- img.at<Vec3b>(j, k)[1] = 0;
- }
- }
- }
- vis.push_back(img);
- }
- mosaic(25, vis, mos);
- }
- static void bincount(const Mat& x, const Mat& weights, const int min_length, vector<double>& bins)
- {
- double max_x_val = 0;
- minMaxLoc(x, NULL, &max_x_val);
- bins = vector<double>(max((int)max_x_val, min_length));
- for (int i = 0; i < x.rows; i++)
- {
- for (int j = 0; j < x.cols; j++)
- {
- bins[x.at<int>(i, j)] += weights.at<float>(i, j);
- }
- }
- }
- static void preprocess_hog(const vector<Mat>& digits, Mat& hog)
- {
- int bin_n = 16;
- int half_cell = SZ / 2;
- double eps = 1e-7;
- hog = Mat(Size(4 * bin_n, (int)digits.size()), CV_32F);
- for (size_t img_index = 0; img_index < digits.size(); img_index++)
- {
- Mat gx;
- Sobel(digits[img_index], gx, CV_32F, 1, 0);
- Mat gy;
- Sobel(digits[img_index], gy, CV_32F, 0, 1);
- Mat mag;
- Mat ang;
- cartToPolar(gx, gy, mag, ang);
- Mat bin(ang.size(), CV_32S);
- for (int i = 0; i < ang.rows; i++)
- {
- for (int j = 0; j < ang.cols; j++)
- {
- bin.at<int>(i, j) = (int)(bin_n * ang.at<float>(i, j) / (2 * CV_PI));
- }
- }
- Mat bin_cells[] = {
- bin(Rect(0, 0, half_cell, half_cell)),
- bin(Rect(half_cell, 0, half_cell, half_cell)),
- bin(Rect(0, half_cell, half_cell, half_cell)),
- bin(Rect(half_cell, half_cell, half_cell, half_cell))
- };
- Mat mag_cells[] = {
- mag(Rect(0, 0, half_cell, half_cell)),
- mag(Rect(half_cell, 0, half_cell, half_cell)),
- mag(Rect(0, half_cell, half_cell, half_cell)),
- mag(Rect(half_cell, half_cell, half_cell, half_cell))
- };
- vector<double> hist;
- hist.reserve(4 * bin_n);
- for (int i = 0; i < 4; i++)
- {
- vector<double> partial_hist;
- bincount(bin_cells[i], mag_cells[i], bin_n, partial_hist);
- hist.insert(hist.end(), partial_hist.begin(), partial_hist.end());
- }
- // transform to Hellinger kernel
- double sum = 0;
- for (size_t i = 0; i < hist.size(); i++)
- {
- sum += hist[i];
- }
- for (size_t i = 0; i < hist.size(); i++)
- {
- hist[i] /= sum + eps;
- hist[i] = sqrt(hist[i]);
- }
- double hist_norm = norm(hist);
- for (size_t i = 0; i < hist.size(); i++)
- {
- hog.at<float>((int)img_index, (int)i) = (float)(hist[i] / (hist_norm + eps));
- }
- }
- }
- static void shuffle(vector<Mat>& digits, vector<int>& labels)
- {
- vector<int> shuffled_indexes(digits.size());
- for (size_t i = 0; i < digits.size(); i++)
- {
- shuffled_indexes[i] = (int)i;
- }
- randShuffle(shuffled_indexes);
- vector<Mat> shuffled_digits(digits.size());
- vector<int> shuffled_labels(labels.size());
- for (size_t i = 0; i < shuffled_indexes.size(); i++)
- {
- shuffled_digits[shuffled_indexes[i]] = digits[i];
- shuffled_labels[shuffled_indexes[i]] = labels[i];
- }
- digits = shuffled_digits;
- labels = shuffled_labels;
- }
- int main(int /* argc */, char* argv[])
- {
- help(argv);
- vector<Mat> digits;
- vector<int> labels;
- load_digits(DIGITS_FN, digits, labels);
- cout << "preprocessing..." << endl;
- // shuffle digits
- shuffle(digits, labels);
- vector<Mat> digits2;
- for (size_t i = 0; i < digits.size(); i++)
- {
- Mat deskewed_digit;
- deskew(digits[i], deskewed_digit);
- digits2.push_back(deskewed_digit);
- }
- Mat samples;
- preprocess_hog(digits2, samples);
- int train_n = (int)(0.9 * samples.rows);
- Mat test_set;
- vector<Mat> digits_test(digits2.begin() + train_n, digits2.end());
- mosaic(25, digits_test, test_set);
- imshow("test set", test_set);
- Mat samples_train = samples(Rect(0, 0, samples.cols, train_n));
- Mat samples_test = samples(Rect(0, train_n, samples.cols, samples.rows - train_n));
- vector<int> labels_train(labels.begin(), labels.begin() + train_n);
- vector<int> labels_test(labels.begin() + train_n, labels.end());
- Ptr<ml::KNearest> k_nearest;
- Ptr<ml::SVM> svm;
- vector<float> predictions;
- Mat vis;
- cout << "training KNearest..." << endl;
- k_nearest = ml::KNearest::create();
- k_nearest->train(samples_train, ml::ROW_SAMPLE, labels_train);
- // predict digits with KNearest
- k_nearest->findNearest(samples_test, 4, predictions);
- evaluate_model(predictions, digits_test, labels_test, vis);
- imshow("KNearest test", vis);
- k_nearest.release();
- cout << "training SVM..." << endl;
- svm = ml::SVM::create();
- svm->setGamma(5.383);
- svm->setC(2.67);
- svm->setKernel(ml::SVM::RBF);
- svm->setType(ml::SVM::C_SVC);
- svm->train(samples_train, ml::ROW_SAMPLE, labels_train);
- // predict digits with SVM
- svm->predict(samples_test, predictions);
- evaluate_model(predictions, digits_test, labels_test, vis);
- imshow("SVM test", vis);
- cout << "Saving SVM as \"digits_svm.yml\"..." << endl;
- svm->save("digits_svm.yml");
- svm.release();
- waitKey();
- return 0;
- }
|