123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- #!/usr/bin/env python
- '''
- Lucas-Kanade tracker
- ====================
- Lucas-Kanade sparse optical flow demo. Uses goodFeaturesToTrack
- for track initialization and back-tracking for match verification
- between frames.
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import numpy as np
- import cv2 as cv
- #local modules
- from tst_scene_render import TestSceneRender
- from tests_common import NewOpenCVTests, intersectionRate, isPointInRect
- lk_params = dict( winSize = (15, 15),
- maxLevel = 2,
- criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 0.03))
- feature_params = dict( maxCorners = 500,
- qualityLevel = 0.3,
- minDistance = 7,
- blockSize = 7 )
- def getRectFromPoints(points):
- distances = []
- for point in points:
- distances.append(cv.norm(point, cv.NORM_L2))
- x0, y0 = points[np.argmin(distances)]
- x1, y1 = points[np.argmax(distances)]
- return np.array([x0, y0, x1, y1])
- class lk_track_test(NewOpenCVTests):
- track_len = 10
- detect_interval = 5
- tracks = []
- frame_idx = 0
- render = None
- def test_lk_track(self):
- self.render = TestSceneRender(self.get_sample('samples/data/graf1.png'), self.get_sample('samples/data/box.png'))
- self.runTracker()
- def runTracker(self):
- foregroundPointsNum = 0
- while True:
- frame = self.render.getNextFrame()
- frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
- if len(self.tracks) > 0:
- img0, img1 = self.prev_gray, frame_gray
- p0 = np.float32([tr[-1][0] for tr in self.tracks]).reshape(-1, 1, 2)
- p1, _st, _err = cv.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
- p0r, _st, _err = cv.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
- d = abs(p0-p0r).reshape(-1, 2).max(-1)
- good = d < 1
- new_tracks = []
- for tr, (x, y), good_flag in zip(self.tracks, p1.reshape(-1, 2), good):
- if not good_flag:
- continue
- tr.append([(x, y), self.frame_idx])
- if len(tr) > self.track_len:
- del tr[0]
- new_tracks.append(tr)
- self.tracks = new_tracks
- if self.frame_idx % self.detect_interval == 0:
- goodTracksCount = 0
- for tr in self.tracks:
- oldRect = self.render.getRectInTime(self.render.timeStep * tr[0][1])
- newRect = self.render.getRectInTime(self.render.timeStep * tr[-1][1])
- if isPointInRect(tr[0][0], oldRect) and isPointInRect(tr[-1][0], newRect):
- goodTracksCount += 1
- if self.frame_idx == self.detect_interval:
- foregroundPointsNum = goodTracksCount
- fgIndex = float(foregroundPointsNum) / (foregroundPointsNum + 1)
- fgRate = float(goodTracksCount) / (len(self.tracks) + 1)
- if self.frame_idx > 0:
- self.assertGreater(fgIndex, 0.9)
- self.assertGreater(fgRate, 0.2)
- mask = np.zeros_like(frame_gray)
- mask[:] = 255
- for x, y in [np.int32(tr[-1][0]) for tr in self.tracks]:
- cv.circle(mask, (x, y), 5, 0, -1)
- p = cv.goodFeaturesToTrack(frame_gray, mask = mask, **feature_params)
- if p is not None:
- for x, y in np.float32(p).reshape(-1, 2):
- self.tracks.append([[(x, y), self.frame_idx]])
- self.frame_idx += 1
- self.prev_gray = frame_gray
- if self.frame_idx > 300:
- break
- if __name__ == '__main__':
- NewOpenCVTests.bootstrap()
|