test_lk_track.py 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115
  1. #!/usr/bin/env python
  2. '''
  3. Lucas-Kanade tracker
  4. ====================
  5. Lucas-Kanade sparse optical flow demo. Uses goodFeaturesToTrack
  6. for track initialization and back-tracking for match verification
  7. between frames.
  8. '''
  9. # Python 2/3 compatibility
  10. from __future__ import print_function
  11. import numpy as np
  12. import cv2 as cv
  13. #local modules
  14. from tst_scene_render import TestSceneRender
  15. from tests_common import NewOpenCVTests, intersectionRate, isPointInRect
  16. lk_params = dict( winSize = (15, 15),
  17. maxLevel = 2,
  18. criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 0.03))
  19. feature_params = dict( maxCorners = 500,
  20. qualityLevel = 0.3,
  21. minDistance = 7,
  22. blockSize = 7 )
  23. def getRectFromPoints(points):
  24. distances = []
  25. for point in points:
  26. distances.append(cv.norm(point, cv.NORM_L2))
  27. x0, y0 = points[np.argmin(distances)]
  28. x1, y1 = points[np.argmax(distances)]
  29. return np.array([x0, y0, x1, y1])
  30. class lk_track_test(NewOpenCVTests):
  31. track_len = 10
  32. detect_interval = 5
  33. tracks = []
  34. frame_idx = 0
  35. render = None
  36. def test_lk_track(self):
  37. self.render = TestSceneRender(self.get_sample('samples/data/graf1.png'), self.get_sample('samples/data/box.png'))
  38. self.runTracker()
  39. def runTracker(self):
  40. foregroundPointsNum = 0
  41. while True:
  42. frame = self.render.getNextFrame()
  43. frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
  44. if len(self.tracks) > 0:
  45. img0, img1 = self.prev_gray, frame_gray
  46. p0 = np.float32([tr[-1][0] for tr in self.tracks]).reshape(-1, 1, 2)
  47. p1, _st, _err = cv.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
  48. p0r, _st, _err = cv.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
  49. d = abs(p0-p0r).reshape(-1, 2).max(-1)
  50. good = d < 1
  51. new_tracks = []
  52. for tr, (x, y), good_flag in zip(self.tracks, p1.reshape(-1, 2), good):
  53. if not good_flag:
  54. continue
  55. tr.append([(x, y), self.frame_idx])
  56. if len(tr) > self.track_len:
  57. del tr[0]
  58. new_tracks.append(tr)
  59. self.tracks = new_tracks
  60. if self.frame_idx % self.detect_interval == 0:
  61. goodTracksCount = 0
  62. for tr in self.tracks:
  63. oldRect = self.render.getRectInTime(self.render.timeStep * tr[0][1])
  64. newRect = self.render.getRectInTime(self.render.timeStep * tr[-1][1])
  65. if isPointInRect(tr[0][0], oldRect) and isPointInRect(tr[-1][0], newRect):
  66. goodTracksCount += 1
  67. if self.frame_idx == self.detect_interval:
  68. foregroundPointsNum = goodTracksCount
  69. fgIndex = float(foregroundPointsNum) / (foregroundPointsNum + 1)
  70. fgRate = float(goodTracksCount) / (len(self.tracks) + 1)
  71. if self.frame_idx > 0:
  72. self.assertGreater(fgIndex, 0.9)
  73. self.assertGreater(fgRate, 0.2)
  74. mask = np.zeros_like(frame_gray)
  75. mask[:] = 255
  76. for x, y in [np.int32(tr[-1][0]) for tr in self.tracks]:
  77. cv.circle(mask, (x, y), 5, 0, -1)
  78. p = cv.goodFeaturesToTrack(frame_gray, mask = mask, **feature_params)
  79. if p is not None:
  80. for x, y in np.float32(p).reshape(-1, 2):
  81. self.tracks.append([[(x, y), self.frame_idx]])
  82. self.frame_idx += 1
  83. self.prev_gray = frame_gray
  84. if self.frame_idx > 300:
  85. break
  86. if __name__ == '__main__':
  87. NewOpenCVTests.bootstrap()