123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100 |
- #!/usr/bin/env python
- '''
- Lucas-Kanade homography tracker test
- ===============================
- Uses goodFeaturesToTrack for track initialization and back-tracking for match verification
- between frames. Finds homography between reference and current views.
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import numpy as np
- import cv2 as cv
- #local modules
- from tst_scene_render import TestSceneRender
- from tests_common import NewOpenCVTests, isPointInRect
- lk_params = dict( winSize = (19, 19),
- maxLevel = 2,
- criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 0.03))
- feature_params = dict( maxCorners = 1000,
- qualityLevel = 0.01,
- minDistance = 8,
- blockSize = 19 )
- def checkedTrace(img0, img1, p0, back_threshold = 1.0):
- p1, _st, _err = cv.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
- p0r, _st, _err = cv.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
- d = abs(p0-p0r).reshape(-1, 2).max(-1)
- status = d < back_threshold
- return p1, status
- class lk_homography_test(NewOpenCVTests):
- render = None
- framesCounter = 0
- frame = frame0 = None
- p0 = None
- p1 = None
- gray0 = gray1 = None
- numFeaturesInRectOnStart = 0
- def test_lk_homography(self):
- self.render = TestSceneRender(self.get_sample('samples/data/graf1.png'),
- self.get_sample('samples/data/box.png'), noise = 0.1, speed = 1.0)
- frame = self.render.getNextFrame()
- frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
- self.frame0 = frame.copy()
- self.p0 = cv.goodFeaturesToTrack(frame_gray, **feature_params)
- isForegroundHomographyFound = False
- if self.p0 is not None:
- self.p1 = self.p0
- self.gray0 = frame_gray
- self.gray1 = frame_gray
- currRect = self.render.getCurrentRect()
- for (x,y) in self.p0[:,0]:
- if isPointInRect((x,y), currRect):
- self.numFeaturesInRectOnStart += 1
- while self.framesCounter < 200:
- self.framesCounter += 1
- frame = self.render.getNextFrame()
- frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
- if self.p0 is not None:
- p2, trace_status = checkedTrace(self.gray1, frame_gray, self.p1)
- self.p1 = p2[trace_status].copy()
- self.p0 = self.p0[trace_status].copy()
- self.gray1 = frame_gray
- if len(self.p0) < 4:
- self.p0 = None
- continue
- _H, status = cv.findHomography(self.p0, self.p1, cv.RANSAC, 5.0)
- goodPointsInRect = 0
- goodPointsOutsideRect = 0
- for (_x0, _y0), (x1, y1), good in zip(self.p0[:,0], self.p1[:,0], status[:,0]):
- if good:
- if isPointInRect((x1,y1), self.render.getCurrentRect()):
- goodPointsInRect += 1
- else: goodPointsOutsideRect += 1
- if goodPointsOutsideRect < goodPointsInRect:
- isForegroundHomographyFound = True
- self.assertGreater(float(goodPointsInRect) / (self.numFeaturesInRectOnStart + 1), 0.6)
- else:
- self.p0 = cv.goodFeaturesToTrack(frame_gray, **feature_params)
- self.assertEqual(isForegroundHomographyFound, True)
- if __name__ == '__main__':
- NewOpenCVTests.bootstrap()
|