123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- void loadImage(string path, Mat &img)
- {
- img = imread(path, -1);
- ASSERT_FALSE(img.empty()) << "Could not load input image " << path;
- }
- void checkEqual(Mat img0, Mat img1, double threshold, const string& name)
- {
- double max = 1.0;
- minMaxLoc(abs(img0 - img1), NULL, &max);
- ASSERT_FALSE(max > threshold) << "max=" << max << " threshold=" << threshold << " method=" << name;
- }
- static vector<float> DEFAULT_VECTOR;
- void loadExposureSeq(String path, vector<Mat>& images, vector<float>& times = DEFAULT_VECTOR)
- {
- std::ifstream list_file((path + "list.txt").c_str());
- ASSERT_TRUE(list_file.is_open());
- string name;
- float val;
- while(list_file >> name >> val) {
- Mat img = imread(path + name);
- ASSERT_FALSE(img.empty()) << "Could not load input image " << path + name;
- images.push_back(img);
- times.push_back(1 / val);
- }
- list_file.close();
- }
- void loadResponseCSV(String path, Mat& response)
- {
- response = Mat(256, 1, CV_32FC3);
- std::ifstream resp_file(path.c_str());
- for(int i = 0; i < 256; i++) {
- for(int c = 0; c < 3; c++) {
- resp_file >> response.at<Vec3f>(i)[c];
- resp_file.ignore(1);
- }
- }
- resp_file.close();
- }
- TEST(Photo_Tonemap, regression)
- {
- string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/tonemap/";
- Mat img, expected, result;
- loadImage(test_path + "image.hdr", img);
- float gamma = 2.2f;
- Ptr<Tonemap> linear = createTonemap(gamma);
- linear->process(img, result);
- loadImage(test_path + "linear.png", expected);
- result.convertTo(result, CV_8UC3, 255);
- checkEqual(result, expected, 3, "Simple");
- Ptr<TonemapDrago> drago = createTonemapDrago(gamma);
- drago->process(img, result);
- loadImage(test_path + "drago.png", expected);
- result.convertTo(result, CV_8UC3, 255);
- checkEqual(result, expected, 3, "Drago");
- Ptr<TonemapReinhard> reinhard = createTonemapReinhard(gamma);
- reinhard->process(img, result);
- loadImage(test_path + "reinhard.png", expected);
- result.convertTo(result, CV_8UC3, 255);
- checkEqual(result, expected, 3, "Reinhard");
- Ptr<TonemapMantiuk> mantiuk = createTonemapMantiuk(gamma);
- mantiuk->process(img, result);
- loadImage(test_path + "mantiuk.png", expected);
- result.convertTo(result, CV_8UC3, 255);
- checkEqual(result, expected, 3, "Mantiuk");
- }
- TEST(Photo_AlignMTB, regression)
- {
- const int TESTS_COUNT = 100;
- string folder = string(cvtest::TS::ptr()->get_data_path()) + "shared/";
- string file_name = folder + "lena.png";
- Mat img;
- loadImage(file_name, img);
- cvtColor(img, img, COLOR_RGB2GRAY);
- int max_bits = 5;
- int max_shift = 32;
- srand(static_cast<unsigned>(time(0)));
- int errors = 0;
- Ptr<AlignMTB> align = createAlignMTB(max_bits);
- RNG rng = theRNG();
- for(int i = 0; i < TESTS_COUNT; i++) {
- Point shift(rng.uniform(0, max_shift), rng.uniform(0, max_shift));
- Mat res;
- align->shiftMat(img, res, shift);
- Point calc = align->calculateShift(img, res);
- errors += (calc != -shift);
- }
- ASSERT_TRUE(errors < 5) << errors << " errors";
- }
- TEST(Photo_MergeMertens, regression)
- {
- string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
- vector<Mat> images;
- loadExposureSeq((test_path + "exposures/").c_str() , images);
- Ptr<MergeMertens> merge = createMergeMertens();
- Mat result, expected;
- loadImage(test_path + "merge/mertens.png", expected);
- merge->process(images, result);
- result.convertTo(result, CV_8UC3, 255);
- checkEqual(expected, result, 3, "Mertens");
- Mat uniform(100, 100, CV_8UC3);
- uniform = Scalar(0, 255, 0);
- images.clear();
- images.push_back(uniform);
- merge->process(images, result);
- result.convertTo(result, CV_8UC3, 255);
- checkEqual(uniform, result, 1e-2f, "Mertens");
- }
- TEST(Photo_MergeDebevec, regression)
- {
- string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
- vector<Mat> images;
- vector<float> times;
- Mat response;
- loadExposureSeq(test_path + "exposures/", images, times);
- loadResponseCSV(test_path + "exposures/response.csv", response);
- Ptr<MergeDebevec> merge = createMergeDebevec();
- Mat result, expected;
- loadImage(test_path + "merge/debevec.hdr", expected);
- merge->process(images, result, times, response);
- Ptr<Tonemap> map = createTonemap();
- map->process(result, result);
- map->process(expected, expected);
- checkEqual(expected, result, 1e-2f, "Debevec");
- }
- TEST(Photo_MergeRobertson, regression)
- {
- string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
- vector<Mat> images;
- vector<float> times;
- loadExposureSeq(test_path + "exposures/", images, times);
- Ptr<MergeRobertson> merge = createMergeRobertson();
- Mat result, expected;
- loadImage(test_path + "merge/robertson.hdr", expected);
- merge->process(images, result, times);
- const float eps = 6.f;
- checkEqual(expected, result, eps, "MergeRobertson");
- }
- TEST(Photo_CalibrateDebevec, regression)
- {
- string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
- vector<Mat> images;
- vector<float> times;
- Mat response, expected;
- loadExposureSeq(test_path + "exposures/", images, times);
- loadResponseCSV(test_path + "calibrate/debevec.csv", expected);
- Ptr<CalibrateDebevec> calibrate = createCalibrateDebevec();
- calibrate->process(images, response, times);
- Mat diff = abs(response - expected);
- diff = diff.mul(1.0f / response);
- double max;
- minMaxLoc(diff, NULL, &max);
- #if defined(__arm__) || defined(__aarch64__)
- ASSERT_LT(max, 0.131);
- #else
- ASSERT_LT(max, 0.1);
- #endif
- }
- TEST(Photo_CalibrateRobertson, regression)
- {
- string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
- vector<Mat> images;
- vector<float> times;
- Mat response, expected;
- loadExposureSeq(test_path + "exposures/", images, times);
- loadResponseCSV(test_path + "calibrate/robertson.csv", expected);
- Ptr<CalibrateRobertson> calibrate = createCalibrateRobertson();
- calibrate->process(images, response, times);
- checkEqual(expected, response, 1e-1f, "CalibrateRobertson");
- }
- TEST(Photo_CalibrateRobertson, bug_18180)
- {
- vector<Mat> images;
- vector<cv::String> fn;
- string test_path = cvtest::TS::ptr()->get_data_path() + "hdr/exposures/bug_18180/";
- for(int i = 1; i <= 4; ++i)
- images.push_back(imread(test_path + std::to_string(i) + ".jpg"));
- vector<float> times {15.0f, 2.5f, 0.25f, 0.33f};
- Mat response, expected;
- Ptr<CalibrateRobertson> calibrate = createCalibrateRobertson(2, 0.01f);
- calibrate->process(images, response, times);
- Mat response_no_nans = response.clone();
- patchNaNs(response_no_nans);
- // since there should be no NaNs, original response vs. response with NaNs patched should be identical
- EXPECT_EQ(0.0, cv::norm(response, response_no_nans, NORM_L2));
- }
- }} // namespace
|