test_utils.cpp 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189
  1. // This file is part of OpenCV project.
  2. // It is subject to the license terms in the LICENSE file found in the top-level directory
  3. // of this distribution and at http://opencv.org/license.html.
  4. #include "test_precomp.hpp"
  5. namespace opencv_test {
  6. void defaultDistribs( Mat& means, vector<Mat>& covs, int type)
  7. {
  8. float mp0[] = {0.0f, 0.0f}, cp0[] = {0.67f, 0.0f, 0.0f, 0.67f};
  9. float mp1[] = {5.0f, 0.0f}, cp1[] = {1.0f, 0.0f, 0.0f, 1.0f};
  10. float mp2[] = {1.0f, 5.0f}, cp2[] = {1.0f, 0.0f, 0.0f, 1.0f};
  11. means.create(3, 2, type);
  12. Mat m0( 1, 2, CV_32FC1, mp0 ), c0( 2, 2, CV_32FC1, cp0 );
  13. Mat m1( 1, 2, CV_32FC1, mp1 ), c1( 2, 2, CV_32FC1, cp1 );
  14. Mat m2( 1, 2, CV_32FC1, mp2 ), c2( 2, 2, CV_32FC1, cp2 );
  15. means.resize(3), covs.resize(3);
  16. Mat mr0 = means.row(0);
  17. m0.convertTo(mr0, type);
  18. c0.convertTo(covs[0], type);
  19. Mat mr1 = means.row(1);
  20. m1.convertTo(mr1, type);
  21. c1.convertTo(covs[1], type);
  22. Mat mr2 = means.row(2);
  23. m2.convertTo(mr2, type);
  24. c2.convertTo(covs[2], type);
  25. }
  26. // generate points sets by normal distributions
  27. void generateData( Mat& data, Mat& labels, const vector<int>& sizes, const Mat& _means, const vector<Mat>& covs, int dataType, int labelType )
  28. {
  29. vector<int>::const_iterator sit = sizes.begin();
  30. int total = 0;
  31. for( ; sit != sizes.end(); ++sit )
  32. total += *sit;
  33. CV_Assert( _means.rows == (int)sizes.size() && covs.size() == sizes.size() );
  34. CV_Assert( !data.empty() && data.rows == total );
  35. CV_Assert( data.type() == dataType );
  36. labels.create( data.rows, 1, labelType );
  37. randn( data, Scalar::all(-1.0), Scalar::all(1.0) );
  38. vector<Mat> means(sizes.size());
  39. for(int i = 0; i < _means.rows; i++)
  40. means[i] = _means.row(i);
  41. vector<Mat>::const_iterator mit = means.begin(), cit = covs.begin();
  42. int bi, ei = 0;
  43. sit = sizes.begin();
  44. for( int p = 0, l = 0; sit != sizes.end(); ++sit, ++mit, ++cit, l++ )
  45. {
  46. bi = ei;
  47. ei = bi + *sit;
  48. CV_Assert( mit->rows == 1 && mit->cols == data.cols );
  49. CV_Assert( cit->rows == data.cols && cit->cols == data.cols );
  50. for( int i = bi; i < ei; i++, p++ )
  51. {
  52. Mat r = data.row(i);
  53. r = r * (*cit) + *mit;
  54. if( labelType == CV_32FC1 )
  55. labels.at<float>(p, 0) = (float)l;
  56. else if( labelType == CV_32SC1 )
  57. labels.at<int>(p, 0) = l;
  58. else
  59. {
  60. CV_DbgAssert(0);
  61. }
  62. }
  63. }
  64. }
  65. int maxIdx( const vector<int>& count )
  66. {
  67. int idx = -1;
  68. int maxVal = -1;
  69. vector<int>::const_iterator it = count.begin();
  70. for( int i = 0; it != count.end(); ++it, i++ )
  71. {
  72. if( *it > maxVal)
  73. {
  74. maxVal = *it;
  75. idx = i;
  76. }
  77. }
  78. CV_Assert( idx >= 0);
  79. return idx;
  80. }
  81. bool getLabelsMap( const Mat& labels, const vector<int>& sizes, vector<int>& labelsMap, bool checkClusterUniq)
  82. {
  83. size_t total = 0, nclusters = sizes.size();
  84. for(size_t i = 0; i < sizes.size(); i++)
  85. total += sizes[i];
  86. CV_Assert( !labels.empty() );
  87. CV_Assert( labels.total() == total && (labels.cols == 1 || labels.rows == 1));
  88. CV_Assert( labels.type() == CV_32SC1 || labels.type() == CV_32FC1 );
  89. bool isFlt = labels.type() == CV_32FC1;
  90. labelsMap.resize(nclusters);
  91. vector<bool> buzy(nclusters, false);
  92. int startIndex = 0;
  93. for( size_t clusterIndex = 0; clusterIndex < sizes.size(); clusterIndex++ )
  94. {
  95. vector<int> count( nclusters, 0 );
  96. for( int i = startIndex; i < startIndex + sizes[clusterIndex]; i++)
  97. {
  98. int lbl = isFlt ? (int)labels.at<float>(i) : labels.at<int>(i);
  99. CV_Assert(lbl < (int)nclusters);
  100. count[lbl]++;
  101. CV_Assert(count[lbl] < (int)total);
  102. }
  103. startIndex += sizes[clusterIndex];
  104. int cls = maxIdx( count );
  105. CV_Assert( !checkClusterUniq || !buzy[cls] );
  106. labelsMap[clusterIndex] = cls;
  107. buzy[cls] = true;
  108. }
  109. if(checkClusterUniq)
  110. {
  111. for(size_t i = 0; i < buzy.size(); i++)
  112. if(!buzy[i])
  113. return false;
  114. }
  115. return true;
  116. }
  117. bool calcErr( const Mat& labels, const Mat& origLabels, const vector<int>& sizes, float& err, bool labelsEquivalent, bool checkClusterUniq)
  118. {
  119. err = 0;
  120. CV_Assert( !labels.empty() && !origLabels.empty() );
  121. CV_Assert( labels.rows == 1 || labels.cols == 1 );
  122. CV_Assert( origLabels.rows == 1 || origLabels.cols == 1 );
  123. CV_Assert( labels.total() == origLabels.total() );
  124. CV_Assert( labels.type() == CV_32SC1 || labels.type() == CV_32FC1 );
  125. CV_Assert( origLabels.type() == labels.type() );
  126. vector<int> labelsMap;
  127. bool isFlt = labels.type() == CV_32FC1;
  128. if( !labelsEquivalent )
  129. {
  130. if( !getLabelsMap( labels, sizes, labelsMap, checkClusterUniq ) )
  131. return false;
  132. for( int i = 0; i < labels.rows; i++ )
  133. if( isFlt )
  134. err += labels.at<float>(i) != labelsMap[(int)origLabels.at<float>(i)] ? 1.f : 0.f;
  135. else
  136. err += labels.at<int>(i) != labelsMap[origLabels.at<int>(i)] ? 1.f : 0.f;
  137. }
  138. else
  139. {
  140. for( int i = 0; i < labels.rows; i++ )
  141. if( isFlt )
  142. err += labels.at<float>(i) != origLabels.at<float>(i) ? 1.f : 0.f;
  143. else
  144. err += labels.at<int>(i) != origLabels.at<int>(i) ? 1.f : 0.f;
  145. }
  146. err /= (float)labels.rows;
  147. return true;
  148. }
  149. bool calculateError( const Mat& _p_labels, const Mat& _o_labels, float& error)
  150. {
  151. error = 0.0f;
  152. float accuracy = 0.0f;
  153. Mat _p_labels_temp;
  154. Mat _o_labels_temp;
  155. _p_labels.convertTo(_p_labels_temp, CV_32S);
  156. _o_labels.convertTo(_o_labels_temp, CV_32S);
  157. CV_Assert(_p_labels_temp.total() == _o_labels_temp.total());
  158. CV_Assert(_p_labels_temp.rows == _o_labels_temp.rows);
  159. accuracy = (float)countNonZero(_p_labels_temp == _o_labels_temp)/_p_labels_temp.rows;
  160. error = 1 - accuracy;
  161. return true;
  162. }
  163. } // namespace