123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- #include "test_precomp.hpp"
- namespace opencv_test {
- void defaultDistribs( Mat& means, vector<Mat>& covs, int type)
- {
- float mp0[] = {0.0f, 0.0f}, cp0[] = {0.67f, 0.0f, 0.0f, 0.67f};
- float mp1[] = {5.0f, 0.0f}, cp1[] = {1.0f, 0.0f, 0.0f, 1.0f};
- float mp2[] = {1.0f, 5.0f}, cp2[] = {1.0f, 0.0f, 0.0f, 1.0f};
- means.create(3, 2, type);
- Mat m0( 1, 2, CV_32FC1, mp0 ), c0( 2, 2, CV_32FC1, cp0 );
- Mat m1( 1, 2, CV_32FC1, mp1 ), c1( 2, 2, CV_32FC1, cp1 );
- Mat m2( 1, 2, CV_32FC1, mp2 ), c2( 2, 2, CV_32FC1, cp2 );
- means.resize(3), covs.resize(3);
- Mat mr0 = means.row(0);
- m0.convertTo(mr0, type);
- c0.convertTo(covs[0], type);
- Mat mr1 = means.row(1);
- m1.convertTo(mr1, type);
- c1.convertTo(covs[1], type);
- Mat mr2 = means.row(2);
- m2.convertTo(mr2, type);
- c2.convertTo(covs[2], type);
- }
- // generate points sets by normal distributions
- void generateData( Mat& data, Mat& labels, const vector<int>& sizes, const Mat& _means, const vector<Mat>& covs, int dataType, int labelType )
- {
- vector<int>::const_iterator sit = sizes.begin();
- int total = 0;
- for( ; sit != sizes.end(); ++sit )
- total += *sit;
- CV_Assert( _means.rows == (int)sizes.size() && covs.size() == sizes.size() );
- CV_Assert( !data.empty() && data.rows == total );
- CV_Assert( data.type() == dataType );
- labels.create( data.rows, 1, labelType );
- randn( data, Scalar::all(-1.0), Scalar::all(1.0) );
- vector<Mat> means(sizes.size());
- for(int i = 0; i < _means.rows; i++)
- means[i] = _means.row(i);
- vector<Mat>::const_iterator mit = means.begin(), cit = covs.begin();
- int bi, ei = 0;
- sit = sizes.begin();
- for( int p = 0, l = 0; sit != sizes.end(); ++sit, ++mit, ++cit, l++ )
- {
- bi = ei;
- ei = bi + *sit;
- CV_Assert( mit->rows == 1 && mit->cols == data.cols );
- CV_Assert( cit->rows == data.cols && cit->cols == data.cols );
- for( int i = bi; i < ei; i++, p++ )
- {
- Mat r = data.row(i);
- r = r * (*cit) + *mit;
- if( labelType == CV_32FC1 )
- labels.at<float>(p, 0) = (float)l;
- else if( labelType == CV_32SC1 )
- labels.at<int>(p, 0) = l;
- else
- {
- CV_DbgAssert(0);
- }
- }
- }
- }
- int maxIdx( const vector<int>& count )
- {
- int idx = -1;
- int maxVal = -1;
- vector<int>::const_iterator it = count.begin();
- for( int i = 0; it != count.end(); ++it, i++ )
- {
- if( *it > maxVal)
- {
- maxVal = *it;
- idx = i;
- }
- }
- CV_Assert( idx >= 0);
- return idx;
- }
- bool getLabelsMap( const Mat& labels, const vector<int>& sizes, vector<int>& labelsMap, bool checkClusterUniq)
- {
- size_t total = 0, nclusters = sizes.size();
- for(size_t i = 0; i < sizes.size(); i++)
- total += sizes[i];
- CV_Assert( !labels.empty() );
- CV_Assert( labels.total() == total && (labels.cols == 1 || labels.rows == 1));
- CV_Assert( labels.type() == CV_32SC1 || labels.type() == CV_32FC1 );
- bool isFlt = labels.type() == CV_32FC1;
- labelsMap.resize(nclusters);
- vector<bool> buzy(nclusters, false);
- int startIndex = 0;
- for( size_t clusterIndex = 0; clusterIndex < sizes.size(); clusterIndex++ )
- {
- vector<int> count( nclusters, 0 );
- for( int i = startIndex; i < startIndex + sizes[clusterIndex]; i++)
- {
- int lbl = isFlt ? (int)labels.at<float>(i) : labels.at<int>(i);
- CV_Assert(lbl < (int)nclusters);
- count[lbl]++;
- CV_Assert(count[lbl] < (int)total);
- }
- startIndex += sizes[clusterIndex];
- int cls = maxIdx( count );
- CV_Assert( !checkClusterUniq || !buzy[cls] );
- labelsMap[clusterIndex] = cls;
- buzy[cls] = true;
- }
- if(checkClusterUniq)
- {
- for(size_t i = 0; i < buzy.size(); i++)
- if(!buzy[i])
- return false;
- }
- return true;
- }
- bool calcErr( const Mat& labels, const Mat& origLabels, const vector<int>& sizes, float& err, bool labelsEquivalent, bool checkClusterUniq)
- {
- err = 0;
- CV_Assert( !labels.empty() && !origLabels.empty() );
- CV_Assert( labels.rows == 1 || labels.cols == 1 );
- CV_Assert( origLabels.rows == 1 || origLabels.cols == 1 );
- CV_Assert( labels.total() == origLabels.total() );
- CV_Assert( labels.type() == CV_32SC1 || labels.type() == CV_32FC1 );
- CV_Assert( origLabels.type() == labels.type() );
- vector<int> labelsMap;
- bool isFlt = labels.type() == CV_32FC1;
- if( !labelsEquivalent )
- {
- if( !getLabelsMap( labels, sizes, labelsMap, checkClusterUniq ) )
- return false;
- for( int i = 0; i < labels.rows; i++ )
- if( isFlt )
- err += labels.at<float>(i) != labelsMap[(int)origLabels.at<float>(i)] ? 1.f : 0.f;
- else
- err += labels.at<int>(i) != labelsMap[origLabels.at<int>(i)] ? 1.f : 0.f;
- }
- else
- {
- for( int i = 0; i < labels.rows; i++ )
- if( isFlt )
- err += labels.at<float>(i) != origLabels.at<float>(i) ? 1.f : 0.f;
- else
- err += labels.at<int>(i) != origLabels.at<int>(i) ? 1.f : 0.f;
- }
- err /= (float)labels.rows;
- return true;
- }
- bool calculateError( const Mat& _p_labels, const Mat& _o_labels, float& error)
- {
- error = 0.0f;
- float accuracy = 0.0f;
- Mat _p_labels_temp;
- Mat _o_labels_temp;
- _p_labels.convertTo(_p_labels_temp, CV_32S);
- _o_labels.convertTo(_o_labels_temp, CV_32S);
- CV_Assert(_p_labels_temp.total() == _o_labels_temp.total());
- CV_Assert(_p_labels_temp.rows == _o_labels_temp.rows);
- accuracy = (float)countNonZero(_p_labels_temp == _o_labels_temp)/_p_labels_temp.rows;
- error = 1 - accuracy;
- return true;
- }
- } // namespace
|