123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002 |
- // //////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //
- // //////////////////////////////////////////////////////////////////////////////////////
- // Author: Sajjad Taheri, University of California, Irvine. sajjadt[at]uci[dot]edu
- //
- // LICENSE AGREEMENT
- // Copyright (c) 2015 The Regents of the University of California (Regents)
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- // 1. Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // 2. Redistributions in binary form must reproduce the above copyright
- // notice, this list of conditions and the following disclaimer in the
- // documentation and/or other materials provided with the distribution.
- // 3. Neither the name of the University nor the
- // names of its contributors may be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY
- // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- // DISCLAIMED. IN NO EVENT SHALL CONTRIBUTORS BE LIABLE FOR ANY
- // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
- // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- //
- if (typeof module !== 'undefined' && module.exports) {
- // The environment is Node.js
- var cv = require('./opencv.js'); // eslint-disable-line no-var
- }
- QUnit.module('Image Processing', {});
- QUnit.test('test_imgProc', function(assert) {
- // calcHist
- {
- let vec1 = new cv.Mat.ones(new cv.Size(20, 20), cv.CV_8UC1); // eslint-disable-line new-cap
- let source = new cv.MatVector();
- source.push_back(vec1);
- let channels = [0];
- let histSize = [256];
- let ranges =[0, 256];
- let hist = new cv.Mat();
- let mask = new cv.Mat();
- let binSize = cv._malloc(4);
- let binView = new Int32Array(cv.HEAP8.buffer, binSize);
- binView[0] = 10;
- cv.calcHist(source, channels, mask, hist, histSize, ranges, false);
- // hist should contains a N X 1 array.
- let size = hist.size();
- assert.equal(size.height, 256);
- assert.equal(size.width, 1);
- // default parameters
- cv.calcHist(source, channels, mask, hist, histSize, ranges);
- size = hist.size();
- assert.equal(size.height, 256);
- assert.equal(size.width, 1);
- // Do we need to verify data in histogram?
- // let dataView = hist.data;
- // Free resource
- cv._free(binSize);
- mask.delete();
- hist.delete();
- }
- // cvtColor
- {
- let source = new cv.Mat(10, 10, cv.CV_8UC3);
- let dest = new cv.Mat();
- cv.cvtColor(source, dest, cv.COLOR_BGR2GRAY, 0);
- assert.equal(dest.channels(), 1);
- cv.cvtColor(source, dest, cv.COLOR_BGR2GRAY);
- assert.equal(dest.channels(), 1);
- cv.cvtColor(source, dest, cv.COLOR_BGR2BGRA, 0);
- assert.equal(dest.channels(), 4);
- cv.cvtColor(source, dest, cv.COLOR_BGR2BGRA);
- assert.equal(dest.channels(), 4);
- dest.delete();
- source.delete();
- }
- // equalizeHist
- {
- let source = new cv.Mat(10, 10, cv.CV_8UC1);
- let dest = new cv.Mat();
- cv.equalizeHist(source, dest);
- // eualizeHist changes the content of a image, but does not alter meta data
- // of it.
- assert.equal(source.channels(), dest.channels());
- assert.equal(source.type(), dest.type());
- dest.delete();
- source.delete();
- }
- // floodFill
- {
- let center = new cv.Point(5, 5);
- let rect = new cv.Rect(0, 0, 0, 0);
- let img = new cv.Mat.zeros(10, 10, cv.CV_8UC1);
- let color = new cv.Scalar (255);
- cv.circle(img, center, 3, color, 1);
- let edge = new cv.Mat();
- cv.Canny(img, edge, 100, 255);
- cv.copyMakeBorder(edge, edge, 1, 1, 1, 1, cv.BORDER_REPLICATE);
- let expected_img_data = new Uint8Array([
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 255, 0, 0, 0, 0,
- 0, 0, 0, 255, 255, 255, 255, 255, 0, 0,
- 0, 0, 0, 255, 0, 255, 0, 255, 0, 0,
- 0, 0, 255, 255, 255, 255, 0, 0, 255, 0,
- 0, 0, 0, 255, 0, 0, 0, 255, 0, 0,
- 0, 0, 0, 255, 255, 0, 255, 255, 0, 0,
- 0, 0, 0, 0, 0, 255, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
- let img_elem = 10*10*1;
- let expected_img_data_ptr = cv._malloc(img_elem);
- let expected_img_data_heap = new Uint8Array(cv.HEAPU8.buffer,
- expected_img_data_ptr,
- img_elem);
- expected_img_data_heap.set(new Uint8Array(expected_img_data.buffer));
- let expected_img = new cv.Mat( 10, 10, cv.CV_8UC1, expected_img_data_ptr, 0);
- let expected_rect = new cv.Rect(3,3,3,3);
- let compare_result = new cv.Mat(10, 10, cv.CV_8UC1);
- cv.floodFill(img, edge, center, color, rect);
- cv.compare (img, expected_img, compare_result, cv.CMP_EQ);
- // expect every pixels are the same.
- assert.equal (cv.countNonZero(compare_result), img.total());
- assert.equal (rect.x, expected_rect.x);
- assert.equal (rect.y, expected_rect.y);
- assert.equal (rect.width, expected_rect.width);
- assert.equal (rect.height, expected_rect.height);
- img.delete();
- edge.delete();
- expected_img.delete();
- compare_result.delete();
- }
- // fillPoly
- {
- let img_width = 6;
- let img_height = 6;
- let img = new cv.Mat.zeros(img_height, img_width, cv.CV_8UC1);
- let npts = 4;
- let square_point_data = new Uint8Array([
- 1, 1,
- 4, 1,
- 4, 4,
- 1, 4]);
- let square_points = cv.matFromArray(npts, 1, cv.CV_32SC2, square_point_data);
- let pts = new cv.MatVector();
- pts.push_back (square_points);
- let color = new cv.Scalar (255);
- let expected_img_data = new Uint8Array([
- 0, 0, 0, 0, 0, 0,
- 0, 255, 255, 255, 255, 0,
- 0, 255, 255, 255, 255, 0,
- 0, 255, 255, 255, 255, 0,
- 0, 255, 255, 255, 255, 0,
- 0, 0, 0, 0, 0, 0]);
- let expected_img = cv.matFromArray(img_height, img_width, cv.CV_8UC1, expected_img_data);
- cv.fillPoly(img, pts, color);
- let compare_result = new cv.Mat(img_height, img_width, cv.CV_8UC1);
- cv.compare (img, expected_img, compare_result, cv.CMP_EQ);
- // expect every pixels are the same.
- assert.equal (cv.countNonZero(compare_result), img.total());
- img.delete();
- square_points.delete();
- pts.delete();
- expected_img.delete();
- compare_result.delete();
- }
- // fillConvexPoly
- {
- let img_width = 6;
- let img_height = 6;
- let img = new cv.Mat.zeros(img_height, img_width, cv.CV_8UC1);
- let npts = 4;
- let square_point_data = new Uint8Array([
- 1, 1,
- 4, 1,
- 4, 4,
- 1, 4]);
- let square_points = cv.matFromArray(npts, 1, cv.CV_32SC2, square_point_data);
- let color = new cv.Scalar (255);
- let expected_img_data = new Uint8Array([
- 0, 0, 0, 0, 0, 0,
- 0, 255, 255, 255, 255, 0,
- 0, 255, 255, 255, 255, 0,
- 0, 255, 255, 255, 255, 0,
- 0, 255, 255, 255, 255, 0,
- 0, 0, 0, 0, 0, 0]);
- let expected_img = cv.matFromArray(img_height, img_width, cv.CV_8UC1, expected_img_data);
- cv.fillConvexPoly(img, square_points, color);
- let compare_result = new cv.Mat(img_height, img_width, cv.CV_8UC1);
- cv.compare (img, expected_img, compare_result, cv.CMP_EQ);
- // expect every pixels are the same.
- assert.equal (cv.countNonZero(compare_result), img.total());
- img.delete();
- square_points.delete();
- expected_img.delete();
- compare_result.delete();
- }
- });
- QUnit.test('test_segmentation', function(assert) {
- const THRESHOLD = 127.0;
- const THRESHOLD_MAX = 210.0;
- // threshold
- {
- let source = new cv.Mat(1, 5, cv.CV_8UC1);
- let sourceView = source.data;
- sourceView[0] = 0; // < threshold
- sourceView[1] = 100; // < threshold
- sourceView[2] = 200; // > threshold
- let dest = new cv.Mat();
- cv.threshold(source, dest, THRESHOLD, THRESHOLD_MAX, cv.THRESH_BINARY);
- let destView = dest.data;
- assert.equal(destView[0], 0);
- assert.equal(destView[1], 0);
- assert.equal(destView[2], THRESHOLD_MAX);
- }
- // adaptiveThreshold
- {
- let source = cv.Mat.zeros(1, 5, cv.CV_8UC1);
- let sourceView = source.data;
- sourceView[0] = 50;
- sourceView[1] = 150;
- sourceView[2] = 200;
- let dest = new cv.Mat();
- const C = 0;
- const blockSize = 3;
- cv.adaptiveThreshold(source, dest, THRESHOLD_MAX,
- cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, blockSize, C);
- let destView = dest.data;
- assert.equal(destView[0], 0);
- assert.equal(destView[1], THRESHOLD_MAX);
- assert.equal(destView[2], THRESHOLD_MAX);
- }
- });
- QUnit.test('test_shape', function(assert) {
- // moments
- {
- let points = new cv.Mat(1, 4, cv.CV_32SC2);
- let data32S = points.data32S;
- data32S[0]=50;
- data32S[1]=56;
- data32S[2]=53;
- data32S[3]=53;
- data32S[4]=46;
- data32S[5]=54;
- data32S[6]=49;
- data32S[7]=51;
- let m = cv.moments(points, false);
- let area = cv.contourArea(points, false);
- assert.equal(m.m00, 0);
- assert.equal(m.m01, 0);
- assert.equal(m.m10, 0);
- assert.equal(area, 0);
- // default parameters
- m = cv.moments(points);
- area = cv.contourArea(points);
- assert.equal(m.m00, 0);
- assert.equal(m.m01, 0);
- assert.equal(m.m10, 0);
- assert.equal(area, 0);
- points.delete();
- }
- });
- QUnit.test('test_min_enclosing', function(assert) {
- {
- let points = new cv.Mat(4, 1, cv.CV_32FC2);
- points.data32F[0] = 0;
- points.data32F[1] = 0;
- points.data32F[2] = 1;
- points.data32F[3] = 0;
- points.data32F[4] = 1;
- points.data32F[5] = 1;
- points.data32F[6] = 0;
- points.data32F[7] = 1;
- let circle = cv.minEnclosingCircle(points);
- assert.deepEqual(circle.center, {x: 0.5, y: 0.5});
- assert.ok(Math.abs(circle.radius - Math.sqrt(2) / 2) < 0.001);
- points.delete();
- }
- });
- QUnit.test('test_filter', function(assert) {
- // blur
- {
- let mat1 = cv.Mat.ones(5, 5, cv.CV_8UC3);
- let mat2 = new cv.Mat();
- cv.blur(mat1, mat2, {height: 3, width: 3}, {x: -1, y: -1}, cv.BORDER_DEFAULT);
- // Verify result.
- let size = mat2.size();
- assert.equal(mat2.channels(), 3);
- assert.equal(size.height, 5);
- assert.equal(size.width, 5);
- cv.blur(mat1, mat2, {height: 3, width: 3}, {x: -1, y: -1});
- // Verify result.
- size = mat2.size();
- assert.equal(mat2.channels(), 3);
- assert.equal(size.height, 5);
- assert.equal(size.width, 5);
- cv.blur(mat1, mat2, {height: 3, width: 3});
- // Verify result.
- size = mat2.size();
- assert.equal(mat2.channels(), 3);
- assert.equal(size.height, 5);
- assert.equal(size.width, 5);
- mat1.delete();
- mat2.delete();
- }
- // GaussianBlur
- {
- let mat1 = cv.Mat.ones(7, 7, cv.CV_8UC1);
- let mat2 = new cv.Mat();
- cv.GaussianBlur(mat1, mat2, new cv.Size(3, 3), 0, 0, // eslint-disable-line new-cap
- cv.BORDER_DEFAULT);
- // Verify result.
- let size = mat2.size();
- assert.equal(mat2.channels(), 1);
- assert.equal(size.height, 7);
- assert.equal(size.width, 7);
- }
- // medianBlur
- {
- let mat1 = cv.Mat.ones(9, 9, cv.CV_8UC3);
- let mat2 = new cv.Mat();
- cv.medianBlur(mat1, mat2, 3);
- // Verify result.
- let size = mat2.size();
- assert.equal(mat2.channels(), 3);
- assert.equal(size.height, 9);
- assert.equal(size.width, 9);
- }
- // Transpose
- {
- let mat1 = cv.Mat.eye(9, 9, cv.CV_8UC3);
- let mat2 = new cv.Mat();
- cv.transpose(mat1, mat2);
- // Verify result.
- let size = mat2.size();
- assert.equal(mat2.channels(), 3);
- assert.equal(size.height, 9);
- assert.equal(size.width, 9);
- }
- // bilateralFilter
- {
- let mat1 = cv.Mat.ones(11, 11, cv.CV_8UC3);
- let mat2 = new cv.Mat();
- cv.bilateralFilter(mat1, mat2, 3, 6, 1.5, cv.BORDER_DEFAULT);
- // Verify result.
- let size = mat2.size();
- assert.equal(mat2.channels(), 3);
- assert.equal(size.height, 11);
- assert.equal(size.width, 11);
- // default parameters
- cv.bilateralFilter(mat1, mat2, 3, 6, 1.5);
- // Verify result.
- size = mat2.size();
- assert.equal(mat2.channels(), 3);
- assert.equal(size.height, 11);
- assert.equal(size.width, 11);
- mat1.delete();
- mat2.delete();
- }
- // Watershed
- {
- let mat = cv.Mat.ones(11, 11, cv.CV_8UC3);
- let out = new cv.Mat(11, 11, cv.CV_32SC1);
- cv.watershed(mat, out);
- // Verify result.
- let size = out.size();
- assert.equal(out.channels(), 1);
- assert.equal(size.height, 11);
- assert.equal(size.width, 11);
- assert.equal(out.elemSize1(), 4);
- mat.delete();
- out.delete();
- }
- // Concat
- {
- let mat = cv.Mat.ones({height: 10, width: 5}, cv.CV_8UC3);
- let mat2 = cv.Mat.eye({height: 10, width: 5}, cv.CV_8UC3);
- let mat3 = cv.Mat.eye({height: 10, width: 5}, cv.CV_8UC3);
- let out = new cv.Mat();
- let input = new cv.MatVector();
- input.push_back(mat);
- input.push_back(mat2);
- input.push_back(mat3);
- cv.vconcat(input, out);
- // Verify result.
- let size = out.size();
- assert.equal(out.channels(), 3);
- assert.equal(size.height, 30);
- assert.equal(size.width, 5);
- assert.equal(out.elemSize1(), 1);
- cv.hconcat(input, out);
- // Verify result.
- size = out.size();
- assert.equal(out.channels(), 3);
- assert.equal(size.height, 10);
- assert.equal(size.width, 15);
- assert.equal(out.elemSize1(), 1);
- input.delete();
- out.delete();
- }
- // distanceTransform letiants
- {
- let mat = cv.Mat.ones(11, 11, cv.CV_8UC1);
- let out = new cv.Mat(11, 11, cv.CV_32FC1);
- let labels = new cv.Mat(11, 11, cv.CV_32FC1);
- const maskSize = 3;
- cv.distanceTransform(mat, out, cv.DIST_L2, maskSize, cv.CV_32F);
- // Verify result.
- let size = out.size();
- assert.equal(out.channels(), 1);
- assert.equal(size.height, 11);
- assert.equal(size.width, 11);
- assert.equal(out.elemSize1(), 4);
- cv.distanceTransformWithLabels(mat, out, labels, cv.DIST_L2, maskSize,
- cv.DIST_LABEL_CCOMP);
- // Verify result.
- size = out.size();
- assert.equal(out.channels(), 1);
- assert.equal(size.height, 11);
- assert.equal(size.width, 11);
- assert.equal(out.elemSize1(), 4);
- size = labels.size();
- assert.equal(labels.channels(), 1);
- assert.equal(size.height, 11);
- assert.equal(size.width, 11);
- assert.equal(labels.elemSize1(), 4);
- mat.delete();
- out.delete();
- labels.delete();
- }
- // Min, Max
- {
- let data1 = new Uint8Array([1, 2, 3, 4, 5, 6, 7, 8, 9]);
- let data2 = new Uint8Array([0, 4, 0, 8, 0, 12, 0, 16, 0]);
- let expectedMin = new Uint8Array([0, 2, 0, 4, 0, 6, 0, 8, 0]);
- let expectedMax = new Uint8Array([1, 4, 3, 8, 5, 12, 7, 16, 9]);
- let dataPtr = cv._malloc(3*3*1);
- let dataPtr2 = cv._malloc(3*3*1);
- let dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 3*3*1);
- dataHeap.set(new Uint8Array(data1.buffer));
- let dataHeap2 = new Uint8Array(cv.HEAPU8.buffer, dataPtr2, 3*3*1);
- dataHeap2.set(new Uint8Array(data2.buffer));
- let mat1 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr, 0);
- let mat2 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr2, 0);
- let mat3 = new cv.Mat();
- cv.min(mat1, mat2, mat3);
- // Verify result.
- let size = mat2.size();
- assert.equal(mat2.channels(), 1);
- assert.equal(size.height, 3);
- assert.equal(size.width, 3);
- assert.deepEqual(mat3.data, expectedMin);
- cv.max(mat1, mat2, mat3);
- // Verify result.
- size = mat2.size();
- assert.equal(mat2.channels(), 1);
- assert.equal(size.height, 3);
- assert.equal(size.width, 3);
- assert.deepEqual(mat3.data, expectedMax);
- cv._free(dataPtr);
- cv._free(dataPtr2);
- }
- // Bitwise operations
- {
- let data1 = new Uint8Array([0, 1, 2, 4, 8, 16, 32, 64, 128]);
- let data2 = new Uint8Array([255, 255, 255, 255, 255, 255, 255, 255, 255]);
- let expectedAnd = new Uint8Array([0, 1, 2, 4, 8, 16, 32, 64, 128]);
- let expectedOr = new Uint8Array([255, 255, 255, 255, 255, 255, 255, 255, 255]);
- let expectedXor = new Uint8Array([255, 254, 253, 251, 247, 239, 223, 191, 127]);
- let expectedNot = new Uint8Array([255, 254, 253, 251, 247, 239, 223, 191, 127]);
- let dataPtr = cv._malloc(3*3*1);
- let dataPtr2 = cv._malloc(3*3*1);
- let dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 3*3*1);
- dataHeap.set(new Uint8Array(data1.buffer));
- let dataHeap2 = new Uint8Array(cv.HEAPU8.buffer, dataPtr2, 3*3*1);
- dataHeap2.set(new Uint8Array(data2.buffer));
- let mat1 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr, 0);
- let mat2 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr2, 0);
- let mat3 = new cv.Mat();
- let none = new cv.Mat();
- cv.bitwise_not(mat1, mat3, none);
- // Verify result.
- let size = mat3.size();
- assert.equal(mat3.channels(), 1);
- assert.equal(size.height, 3);
- assert.equal(size.width, 3);
- assert.deepEqual(mat3.data, expectedNot);
- cv.bitwise_and(mat1, mat2, mat3, none);
- // Verify result.
- size = mat3.size();
- assert.equal(mat3.channels(), 1);
- assert.equal(size.height, 3);
- assert.equal(size.width, 3);
- assert.deepEqual(mat3.data, expectedAnd);
- cv.bitwise_or(mat1, mat2, mat3, none);
- // Verify result.
- size = mat3.size();
- assert.equal(mat3.channels(), 1);
- assert.equal(size.height, 3);
- assert.equal(size.width, 3);
- assert.deepEqual(mat3.data, expectedOr);
- cv.bitwise_xor(mat1, mat2, mat3, none);
- // Verify result.
- size = mat3.size();
- assert.equal(mat3.channels(), 1);
- assert.equal(size.height, 3);
- assert.equal(size.width, 3);
- assert.deepEqual(mat3.data, expectedXor);
- cv._free(dataPtr);
- cv._free(dataPtr2);
- }
- // Arithmetic operations
- {
- let data1 = new Uint8Array([0, 1, 2, 3, 4, 5, 6, 7, 8]);
- let data2 = new Uint8Array([0, 2, 4, 6, 8, 10, 12, 14, 16]);
- let data3 = new Uint8Array([0, 1, 0, 1, 0, 1, 0, 1, 0]);
- // |data1 - data2|
- let expectedAbsDiff = new Uint8Array([0, 1, 2, 3, 4, 5, 6, 7, 8]);
- let expectedAdd = new Uint8Array([0, 3, 6, 9, 12, 15, 18, 21, 24]);
- const alpha = 4;
- const beta = -1;
- const gamma = 3;
- // 4*data1 - data2 + 3
- let expectedWeightedAdd = new Uint8Array([3, 5, 7, 9, 11, 13, 15, 17, 19]);
- let dataPtr = cv._malloc(3*3*1);
- let dataPtr2 = cv._malloc(3*3*1);
- let dataPtr3 = cv._malloc(3*3*1);
- let dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 3*3*1);
- dataHeap.set(new Uint8Array(data1.buffer));
- let dataHeap2 = new Uint8Array(cv.HEAPU8.buffer, dataPtr2, 3*3*1);
- dataHeap2.set(new Uint8Array(data2.buffer));
- let dataHeap3 = new Uint8Array(cv.HEAPU8.buffer, dataPtr3, 3*3*1);
- dataHeap3.set(new Uint8Array(data3.buffer));
- let mat1 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr, 0);
- let mat2 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr2, 0);
- let mat3 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr3, 0);
- let dst = new cv.Mat();
- let none = new cv.Mat();
- cv.absdiff(mat1, mat2, dst);
- // Verify result.
- let size = dst.size();
- assert.equal(dst.channels(), 1);
- assert.equal(size.height, 3);
- assert.equal(size.width, 3);
- assert.deepEqual(dst.data, expectedAbsDiff);
- cv.add(mat1, mat2, dst, none, -1);
- // Verify result.
- size = dst.size();
- assert.equal(dst.channels(), 1);
- assert.equal(size.height, 3);
- assert.equal(size.width, 3);
- assert.deepEqual(dst.data, expectedAdd);
- cv.addWeighted(mat1, alpha, mat2, beta, gamma, dst, -1);
- // Verify result.
- size = dst.size();
- assert.equal(dst.channels(), 1);
- assert.equal(size.height, 3);
- assert.equal(size.width, 3);
- assert.deepEqual(dst.data, expectedWeightedAdd);
- // default parameter
- cv.addWeighted(mat1, alpha, mat2, beta, gamma, dst);
- // Verify result.
- size = dst.size();
- assert.equal(dst.channels(), 1);
- assert.equal(size.height, 3);
- assert.equal(size.width, 3);
- assert.deepEqual(dst.data, expectedWeightedAdd);
- mat1.delete();
- mat2.delete();
- mat3.delete();
- dst.delete();
- none.delete();
- }
- // Integral letiants
- {
- let mat = cv.Mat.eye({height: 100, width: 100}, cv.CV_8UC3);
- let sum = new cv.Mat();
- let sqSum = new cv.Mat();
- let title = new cv.Mat();
- cv.integral(mat, sum, -1);
- // Verify result.
- let size = sum.size();
- assert.equal(sum.channels(), 3);
- assert.equal(size.height, 100+1);
- assert.equal(size.width, 100+1);
- cv.integral2(mat, sum, sqSum, -1, -1);
- // Verify result.
- size = sum.size();
- assert.equal(sum.channels(), 3);
- assert.equal(size.height, 100+1);
- assert.equal(size.width, 100+1);
- size = sqSum.size();
- assert.equal(sqSum.channels(), 3);
- assert.equal(size.height, 100+1);
- assert.equal(size.width, 100+1);
- mat.delete();
- sum.delete();
- sqSum.delete();
- title.delete();
- }
- // Mean, meanSTDev
- {
- let mat = cv.Mat.eye({height: 100, width: 100}, cv.CV_8UC3);
- let sum = new cv.Mat();
- let sqSum = new cv.Mat();
- let title = new cv.Mat();
- cv.integral(mat, sum, -1);
- // Verify result.
- let size = sum.size();
- assert.equal(sum.channels(), 3);
- assert.equal(size.height, 100+1);
- assert.equal(size.width, 100+1);
- cv.integral2(mat, sum, sqSum, -1, -1);
- // Verify result.
- size = sum.size();
- assert.equal(sum.channels(), 3);
- assert.equal(size.height, 100+1);
- assert.equal(size.width, 100+1);
- size = sqSum.size();
- assert.equal(sqSum.channels(), 3);
- assert.equal(size.height, 100+1);
- assert.equal(size.width, 100+1);
- mat.delete();
- sum.delete();
- sqSum.delete();
- title.delete();
- }
- // Invert
- {
- let inv1 = new cv.Mat();
- let inv2 = new cv.Mat();
- let inv3 = new cv.Mat();
- let inv4 = new cv.Mat();
- let data1 = new Float32Array([1, 0, 0,
- 0, 1, 0,
- 0, 0, 1]);
- let data2 = new Float32Array([0, 0, 0,
- 0, 5, 0,
- 0, 0, 0]);
- let data3 = new Float32Array([1, 1, 1, 0,
- 0, 3, 1, 2,
- 2, 3, 1, 0,
- 1, 0, 2, 1]);
- let data4 = new Float32Array([1, 4, 5,
- 4, 2, 2,
- 5, 2, 2]);
- let expected1 = new Float32Array([1, 0, 0,
- 0, 1, 0,
- 0, 0, 1]);
- // Inverse does not exist!
- let expected3 = new Float32Array([-3, -1/2, 3/2, 1,
- 1, 1/4, -1/4, -1/2,
- 3, 1/4, -5/4, -1/2,
- -3, 0, 1, 1]);
- let expected4 = new Float32Array([0, -1, 1,
- -1, 23/2, -9,
- 1, -9, 7]);
- let dataPtr1 = cv._malloc(3*3*4);
- let dataPtr2 = cv._malloc(3*3*4);
- let dataPtr3 = cv._malloc(4*4*4);
- let dataPtr4 = cv._malloc(3*3*4);
- let dataHeap = new Float32Array(cv.HEAP32.buffer, dataPtr1, 3*3);
- dataHeap.set(new Float32Array(data1.buffer));
- let dataHeap2 = new Float32Array(cv.HEAP32.buffer, dataPtr2, 3*3);
- dataHeap2.set(new Float32Array(data2.buffer));
- let dataHeap3 = new Float32Array(cv.HEAP32.buffer, dataPtr3, 4*4);
- dataHeap3.set(new Float32Array(data3.buffer));
- let dataHeap4 = new Float32Array(cv.HEAP32.buffer, dataPtr4, 3*3);
- dataHeap4.set(new Float32Array(data4.buffer));
- let mat1 = new cv.Mat(3, 3, cv.CV_32FC1, dataPtr1, 0);
- let mat2 = new cv.Mat(3, 3, cv.CV_32FC1, dataPtr2, 0);
- let mat3 = new cv.Mat(4, 4, cv.CV_32FC1, dataPtr3, 0);
- let mat4 = new cv.Mat(3, 3, cv.CV_32FC1, dataPtr4, 0);
- QUnit.assert.deepEqualWithTolerance = function( value, expected, tolerance ) {
- for (let i = 0; i < value.length; i= i+1) {
- this.pushResult( {
- result: Math.abs(value[i]-expected[i]) < tolerance,
- actual: value[i],
- expected: expected[i],
- } );
- }
- };
- cv.invert(mat1, inv1, 0);
- // Verify result.
- let size = inv1.size();
- assert.equal(inv1.channels(), 1);
- assert.equal(size.height, 3);
- assert.equal(size.width, 3);
- assert.deepEqualWithTolerance(inv1.data32F, expected1, 0.0001);
- cv.invert(mat2, inv2, 0);
- // Verify result.
- assert.deepEqualWithTolerance(inv3.data32F, expected3, 0.0001);
- cv.invert(mat3, inv3, 0);
- // Verify result.
- size = inv3.size();
- assert.equal(inv3.channels(), 1);
- assert.equal(size.height, 4);
- assert.equal(size.width, 4);
- assert.deepEqualWithTolerance(inv3.data32F, expected3, 0.0001);
- cv.invert(mat3, inv3, 1);
- // Verify result.
- assert.deepEqualWithTolerance(inv3.data32F, expected3, 0.0001);
- cv.invert(mat4, inv4, 2);
- // Verify result.
- assert.deepEqualWithTolerance(inv4.data32F, expected4, 0.0001);
- cv.invert(mat4, inv4, 3);
- // Verify result.
- assert.deepEqualWithTolerance(inv4.data32F, expected4, 0.0001);
- mat1.delete();
- mat2.delete();
- mat3.delete();
- mat4.delete();
- inv1.delete();
- inv2.delete();
- inv3.delete();
- inv4.delete();
- }
- //Rotate
- {
- let dst = new cv.Mat();
- let src = cv.matFromArray(3, 2, cv.CV_8U, [1,2,3,4,5,6]);
- cv.rotate(src, dst, cv.ROTATE_90_CLOCKWISE);
- size = dst.size();
- assert.equal(size.height, 2, "ROTATE_HEIGHT");
- assert.equal(size.width, 3, "ROTATE_WIGTH");
- let expected = new Uint8Array([5,3,1,6,4,2]);
- assert.deepEqual(dst.data, expected);
- dst.delete();
- src.delete();
- }
- });
- QUnit.test('warpPolar', function(assert) {
- const lines = new cv.Mat(255, 255, cv.CV_8U, new cv.Scalar(0));
- for (let r = 0; r < lines.rows; r++) {
- lines.row(r).setTo(new cv.Scalar(r));
- }
- cv.warpPolar(lines, lines, { width: 5, height: 5 }, new cv.Point(2, 2), 3,
- cv.INTER_CUBIC | cv.WARP_FILL_OUTLIERS | cv.WARP_INVERSE_MAP);
- assert.ok(lines instanceof cv.Mat);
- assert.deepEqual(Array.from(lines.data), [
- 159, 172, 191, 210, 223,
- 146, 159, 191, 223, 236,
- 128, 128, 0, 0, 0,
- 109, 96, 64, 32, 19,
- 96, 83, 64, 45, 32
- ]);
- });
- QUnit.test('IntelligentScissorsMB', function(assert) {
- const lines = new cv.Mat(50, 100, cv.CV_8U, new cv.Scalar(0));
- lines.row(10).setTo(new cv.Scalar(255));
- assert.ok(lines instanceof cv.Mat);
- let tool = new cv.segmentation_IntelligentScissorsMB();
- tool.applyImage(lines);
- assert.ok(lines instanceof cv.Mat);
- lines.delete();
- tool.buildMap(new cv.Point(10, 10));
- let contour = new cv.Mat();
- tool.getContour(new cv.Point(50, 10), contour);
- assert.equal(contour.type(), cv.CV_32SC2);
- assert.ok(contour.total() == 41, contour.total());
- tool.getContour(new cv.Point(80, 10), contour);
- assert.equal(contour.type(), cv.CV_32SC2);
- assert.ok(contour.total() == 71, contour.total());
- });
|