123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Copyright (C) 2014, Itseez, Inc, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- //#define GENERATE_DATA // generate data in debug mode via CPU code path (without IPP / OpenCL and other accelerators)
- namespace opencv_test { namespace {
- template<typename T>
- struct SimilarWith
- {
- T value;
- float theta_eps;
- float rho_eps;
- SimilarWith<T>(T val, float e, float r_e): value(val), theta_eps(e), rho_eps(r_e) { };
- bool operator()(const T& other);
- };
- template<>
- bool SimilarWith<Vec2f>::operator()(const Vec2f& other)
- {
- return std::abs(other[0] - value[0]) < rho_eps && std::abs(other[1] - value[1]) < theta_eps;
- }
- template<>
- bool SimilarWith<Vec3f>::operator()(const Vec3f& other)
- {
- return std::abs(other[0] - value[0]) < rho_eps && std::abs(other[1] - value[1]) < theta_eps;
- }
- template<>
- bool SimilarWith<Vec4i>::operator()(const Vec4i& other)
- {
- return cv::norm(value, other) < theta_eps;
- }
- template <typename T>
- int countMatIntersection(const Mat& expect, const Mat& actual, float eps, float rho_eps)
- {
- int count = 0;
- if (!expect.empty() && !actual.empty())
- {
- for (MatConstIterator_<T> it=expect.begin<T>(); it!=expect.end<T>(); it++)
- {
- MatConstIterator_<T> f = std::find_if(actual.begin<T>(), actual.end<T>(), SimilarWith<T>(*it, eps, rho_eps));
- if (f != actual.end<T>())
- count++;
- }
- }
- return count;
- }
- String getTestCaseName(String filename)
- {
- string temp(filename);
- size_t pos = temp.find_first_of("\\/.");
- while ( pos != string::npos ) {
- temp.replace( pos, 1, "_" );
- pos = temp.find_first_of("\\/.");
- }
- return String(temp);
- }
- class BaseHoughLineTest
- {
- public:
- enum {STANDART = 0, PROBABILISTIC};
- protected:
- template<typename LinesType, typename LineType>
- void run_test(int type, const char* xml_name);
- string picture_name;
- double rhoStep;
- double thetaStep;
- int threshold;
- int minLineLength;
- int maxGap;
- };
- typedef tuple<string, double, double, int> Image_RhoStep_ThetaStep_Threshold_t;
- class StandartHoughLinesTest : public BaseHoughLineTest, public testing::TestWithParam<Image_RhoStep_ThetaStep_Threshold_t>
- {
- public:
- StandartHoughLinesTest()
- {
- picture_name = get<0>(GetParam());
- rhoStep = get<1>(GetParam());
- thetaStep = get<2>(GetParam());
- threshold = get<3>(GetParam());
- minLineLength = 0;
- maxGap = 0;
- }
- };
- typedef tuple<string, double, double, int, int, int> Image_RhoStep_ThetaStep_Threshold_MinLine_MaxGap_t;
- class ProbabilisticHoughLinesTest : public BaseHoughLineTest, public testing::TestWithParam<Image_RhoStep_ThetaStep_Threshold_MinLine_MaxGap_t>
- {
- public:
- ProbabilisticHoughLinesTest()
- {
- picture_name = get<0>(GetParam());
- rhoStep = get<1>(GetParam());
- thetaStep = get<2>(GetParam());
- threshold = get<3>(GetParam());
- minLineLength = get<4>(GetParam());
- maxGap = get<5>(GetParam());
- }
- };
- typedef tuple<double, double, double, double> HoughLinesPointSetInput_t;
- class HoughLinesPointSetTest : public testing::TestWithParam<HoughLinesPointSetInput_t>
- {
- protected:
- void run_test();
- double Rho;
- double Theta;
- double rhoMin, rhoMax, rhoStep;
- double thetaMin, thetaMax, thetaStep;
- public:
- HoughLinesPointSetTest()
- {
- rhoMin = get<0>(GetParam());
- rhoMax = get<1>(GetParam());
- rhoStep = (rhoMax - rhoMin) / 360.0f;
- thetaMin = get<2>(GetParam());
- thetaMax = get<3>(GetParam());
- thetaStep = CV_PI / 180.0f;
- Rho = 320.00000;
- Theta = 1.04719;
- }
- };
- template<typename LinesType, typename LineType>
- void BaseHoughLineTest::run_test(int type, const char* xml_name)
- {
- string filename = cvtest::TS::ptr()->get_data_path() + picture_name;
- Mat src = imread(filename, IMREAD_GRAYSCALE);
- ASSERT_FALSE(src.empty()) << "Invalid test image: " << filename;
- string xml = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/" + xml_name;
- Mat dst;
- Canny(src, dst, 100, 150, 3);
- ASSERT_FALSE(dst.empty()) << "Failed Canny edge detector";
- LinesType lines;
- if (type == STANDART)
- HoughLines(dst, lines, rhoStep, thetaStep, threshold, 0, 0);
- else if (type == PROBABILISTIC)
- HoughLinesP(dst, lines, rhoStep, thetaStep, threshold, minLineLength, maxGap);
- String test_case_name = format("lines_%s_%.0f_%.2f_%d_%d_%d", picture_name.c_str(), rhoStep, thetaStep,
- threshold, minLineLength, maxGap);
- test_case_name = getTestCaseName(test_case_name);
- #ifdef GENERATE_DATA
- {
- FileStorage fs(xml, FileStorage::READ);
- ASSERT_TRUE(!fs.isOpened() || fs[test_case_name].empty());
- }
- {
- FileStorage fs(xml, FileStorage::APPEND);
- EXPECT_TRUE(fs.isOpened()) << "Cannot open sanity data file: " << xml;
- fs << test_case_name << Mat(lines);
- }
- #else
- FileStorage fs(xml, FileStorage::READ);
- FileNode node = fs[test_case_name];
- ASSERT_FALSE(node.empty()) << "Missing test data: " << test_case_name << std::endl << "XML: " << xml;
- Mat exp_lines_;
- read(fs[test_case_name], exp_lines_, Mat());
- fs.release();
- LinesType exp_lines;
- exp_lines_.copyTo(exp_lines);
- int count = -1;
- if (type == STANDART)
- count = countMatIntersection<LineType>(Mat(exp_lines), Mat(lines), (float) thetaStep + FLT_EPSILON, (float) rhoStep + FLT_EPSILON);
- else if (type == PROBABILISTIC)
- count = countMatIntersection<LineType>(Mat(exp_lines), Mat(lines), 1e-4f, 0.f);
- #if defined HAVE_IPP && IPP_VERSION_X100 >= 810 && !IPP_DISABLE_HOUGH
- EXPECT_LE(std::abs((double)count - Mat(exp_lines).total()), Mat(exp_lines).total() * 0.25)
- << "count=" << count << " expected=" << Mat(exp_lines).total();
- #else
- EXPECT_EQ(count, (int)Mat(exp_lines).total());
- #endif
- #endif // GENERATE_DATA
- }
- void HoughLinesPointSetTest::run_test(void)
- {
- Mat lines_f, lines_i;
- vector<Point2f> pointf;
- vector<Point2i> pointi;
- vector<Vec3d> line_polar_f, line_polar_i;
- const float Points[20][2] = {
- { 0.0f, 369.0f }, { 10.0f, 364.0f }, { 20.0f, 358.0f }, { 30.0f, 352.0f },
- { 40.0f, 346.0f }, { 50.0f, 341.0f }, { 60.0f, 335.0f }, { 70.0f, 329.0f },
- { 80.0f, 323.0f }, { 90.0f, 318.0f }, { 100.0f, 312.0f }, { 110.0f, 306.0f },
- { 120.0f, 300.0f }, { 130.0f, 295.0f }, { 140.0f, 289.0f }, { 150.0f, 284.0f },
- { 160.0f, 277.0f }, { 170.0f, 271.0f }, { 180.0f, 266.0f }, { 190.0f, 260.0f }
- };
- // Float
- for (int i = 0; i < 20; i++)
- {
- pointf.push_back(Point2f(Points[i][0],Points[i][1]));
- }
- HoughLinesPointSet(pointf, lines_f, 20, 1,
- rhoMin, rhoMax, rhoStep,
- thetaMin, thetaMax, thetaStep);
- lines_f.copyTo( line_polar_f );
- // Integer
- for( int i = 0; i < 20; i++ )
- {
- pointi.push_back( Point2i( (int)Points[i][0], (int)Points[i][1] ) );
- }
- HoughLinesPointSet( pointi, lines_i, 20, 1,
- rhoMin, rhoMax, rhoStep,
- thetaMin, thetaMax, thetaStep );
- lines_i.copyTo( line_polar_i );
- EXPECT_EQ((int)(line_polar_f.at(0).val[1] * 100000.0f), (int)(Rho * 100000.0f));
- EXPECT_EQ((int)(line_polar_f.at(0).val[2] * 100000.0f), (int)(Theta * 100000.0f));
- EXPECT_EQ((int)(line_polar_i.at(0).val[1] * 100000.0f), (int)(Rho * 100000.0f));
- EXPECT_EQ((int)(line_polar_i.at(0).val[2] * 100000.0f), (int)(Theta * 100000.0f));
- }
- TEST_P(StandartHoughLinesTest, regression)
- {
- run_test<Mat, Vec2f>(STANDART, "HoughLines.xml");
- }
- TEST_P(ProbabilisticHoughLinesTest, regression)
- {
- run_test<Mat, Vec4i>(PROBABILISTIC, "HoughLinesP.xml");
- }
- TEST_P(StandartHoughLinesTest, regression_Vec2f)
- {
- run_test<std::vector<Vec2f>, Vec2f>(STANDART, "HoughLines2f.xml");
- }
- TEST_P(StandartHoughLinesTest, regression_Vec3f)
- {
- run_test<std::vector<Vec3f>, Vec3f>(STANDART, "HoughLines3f.xml");
- }
- TEST_P(HoughLinesPointSetTest, regression)
- {
- run_test();
- }
- TEST(HoughLinesPointSet, regression_21029)
- {
- std::vector<Point2f> points;
- points.push_back(Point2f(100, 100));
- points.push_back(Point2f(1000, 1000));
- points.push_back(Point2f(10000, 10000));
- points.push_back(Point2f(100000, 100000));
- double rhoMin = 0;
- double rhoMax = 10;
- double rhoStep = 0.1;
- double thetaMin = 85 * CV_PI / 180.0;
- double thetaMax = 95 * CV_PI / 180.0;
- double thetaStep = 1 * CV_PI / 180.0;
- int lines_max = 5;
- int threshold = 100;
- Mat lines;
- HoughLinesPointSet(points, lines,
- lines_max, threshold,
- rhoMin, rhoMax, rhoStep,
- thetaMin, thetaMax, thetaStep
- );
- EXPECT_TRUE(lines.empty());
- }
- INSTANTIATE_TEST_CASE_P( ImgProc, StandartHoughLinesTest, testing::Combine(testing::Values( "shared/pic5.png", "../stitching/a1.png" ),
- testing::Values( 1, 10 ),
- testing::Values( 0.05, 0.1 ),
- testing::Values( 80, 150 )
- ));
- INSTANTIATE_TEST_CASE_P( ImgProc, ProbabilisticHoughLinesTest, testing::Combine(testing::Values( "shared/pic5.png", "shared/pic1.png" ),
- testing::Values( 5, 10 ),
- testing::Values( 0.05, 0.1 ),
- testing::Values( 75, 150 ),
- testing::Values( 0, 10 ),
- testing::Values( 0, 4 )
- ));
- INSTANTIATE_TEST_CASE_P( Imgproc, HoughLinesPointSetTest, testing::Combine(testing::Values( 0.0f, 120.0f ),
- testing::Values( 360.0f, 480.0f ),
- testing::Values( 0.0f, (CV_PI / 18.0f) ),
- testing::Values( (CV_PI / 2.0f), (CV_PI * 5.0f / 12.0f) )
- ));
- }} // namespace
|