123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698 |
- #include <algorithm>
- #include <cctype>
- #include <cmath>
- #include <iostream>
- #include <limits>
- #include <numeric>
- #include <stdexcept>
- #include <string>
- #include <vector>
- #include <opencv2/gapi.hpp>
- #include <opencv2/gapi/core.hpp>
- #include <opencv2/gapi/cpu/gcpukernel.hpp>
- #include <opencv2/gapi/infer.hpp>
- #include <opencv2/gapi/infer/ie.hpp>
- #include <opencv2/gapi/streaming/cap.hpp>
- #include <opencv2/highgui.hpp>
- #include <opencv2/core/utility.hpp>
- const std::string about =
- "This is an OpenCV-based version of OMZ Text Detection example";
- const std::string keys =
- "{ h help | | Print this help message }"
- "{ input | | Path to the input video file }"
- "{ tdm | text-detection-0004.xml | Path to OpenVINO text detection model (.xml), versions 0003 and 0004 work }"
- "{ tdd | CPU | Target device for the text detector (e.g. CPU, GPU, VPU, ...) }"
- "{ trm | text-recognition-0012.xml | Path to OpenVINO text recognition model (.xml) }"
- "{ trd | CPU | Target device for the text recognition (e.g. CPU, GPU, VPU, ...) }"
- "{ bw | 0 | CTC beam search decoder bandwidth, if 0, a CTC greedy decoder is used}"
- "{ sset | 0123456789abcdefghijklmnopqrstuvwxyz | Symbol set to use with text recognition decoder. Shouldn't contain symbol #. }"
- "{ thr | 0.2 | Text recognition confidence threshold}"
- ;
- namespace {
- std::string weights_path(const std::string &model_path) {
- const auto EXT_LEN = 4u;
- const auto sz = model_path.size();
- CV_Assert(sz > EXT_LEN);
- const auto ext = model_path.substr(sz - EXT_LEN);
- CV_Assert(cv::toLowerCase(ext) == ".xml");
- return model_path.substr(0u, sz - EXT_LEN) + ".bin";
- }
- //////////////////////////////////////////////////////////////////////
- // Taken from OMZ samples as-is
- template<typename Iter>
- void softmax_and_choose(Iter begin, Iter end, int *argmax, float *prob) {
- auto max_element = std::max_element(begin, end);
- *argmax = static_cast<int>(std::distance(begin, max_element));
- float max_val = *max_element;
- double sum = 0;
- for (auto i = begin; i != end; i++) {
- sum += std::exp((*i) - max_val);
- }
- if (std::fabs(sum) < std::numeric_limits<double>::epsilon()) {
- throw std::logic_error("sum can't be equal to zero");
- }
- *prob = 1.0f / static_cast<float>(sum);
- }
- template<typename Iter>
- std::vector<float> softmax(Iter begin, Iter end) {
- std::vector<float> prob(end - begin, 0.f);
- std::transform(begin, end, prob.begin(), [](float x) { return std::exp(x); });
- float sum = std::accumulate(prob.begin(), prob.end(), 0.0f);
- for (int i = 0; i < static_cast<int>(prob.size()); i++)
- prob[i] /= sum;
- return prob;
- }
- struct BeamElement {
- std::vector<int> sentence; //!< The sequence of chars that will be a result of the beam element
- float prob_blank; //!< The probability that the last char in CTC sequence
- //!< for the beam element is the special blank char
- float prob_not_blank; //!< The probability that the last char in CTC sequence
- //!< for the beam element is NOT the special blank char
- float prob() const { //!< The probability of the beam element.
- return prob_blank + prob_not_blank;
- }
- };
- std::string CTCGreedyDecoder(const float *data,
- const std::size_t sz,
- const std::string &alphabet,
- const char pad_symbol,
- double *conf) {
- std::string res = "";
- bool prev_pad = false;
- *conf = 1;
- const auto num_classes = alphabet.length();
- for (auto it = data; it != (data+sz); it += num_classes) {
- int argmax = 0;
- float prob = 0.f;
- softmax_and_choose(it, it + num_classes, &argmax, &prob);
- (*conf) *= prob;
- auto symbol = alphabet[argmax];
- if (symbol != pad_symbol) {
- if (res.empty() || prev_pad || (!res.empty() && symbol != res.back())) {
- prev_pad = false;
- res += symbol;
- }
- } else {
- prev_pad = true;
- }
- }
- return res;
- }
- std::string CTCBeamSearchDecoder(const float *data,
- const std::size_t sz,
- const std::string &alphabet,
- double *conf,
- int bandwidth) {
- const auto num_classes = alphabet.length();
- std::vector<BeamElement> curr;
- std::vector<BeamElement> last;
- last.push_back(BeamElement{std::vector<int>(), 1.f, 0.f});
- for (auto it = data; it != (data+sz); it += num_classes) {
- curr.clear();
- std::vector<float> prob = softmax(it, it + num_classes);
- for(const auto& candidate: last) {
- float prob_not_blank = 0.f;
- const std::vector<int>& candidate_sentence = candidate.sentence;
- if (!candidate_sentence.empty()) {
- int n = candidate_sentence.back();
- prob_not_blank = candidate.prob_not_blank * prob[n];
- }
- float prob_blank = candidate.prob() * prob[num_classes - 1];
- auto check_res = std::find_if(curr.begin(),
- curr.end(),
- [&candidate_sentence](const BeamElement& n) {
- return n.sentence == candidate_sentence;
- });
- if (check_res == std::end(curr)) {
- curr.push_back(BeamElement{candidate.sentence, prob_blank, prob_not_blank});
- } else {
- check_res->prob_not_blank += prob_not_blank;
- if (check_res->prob_blank != 0.f) {
- throw std::logic_error("Probability that the last char in CTC-sequence "
- "is the special blank char must be zero here");
- }
- check_res->prob_blank = prob_blank;
- }
- for (int i = 0; i < static_cast<int>(num_classes) - 1; i++) {
- auto extend = candidate_sentence;
- extend.push_back(i);
- if (candidate_sentence.size() > 0 && candidate.sentence.back() == i) {
- prob_not_blank = prob[i] * candidate.prob_blank;
- } else {
- prob_not_blank = prob[i] * candidate.prob();
- }
- auto check_res2 = std::find_if(curr.begin(),
- curr.end(),
- [&extend](const BeamElement &n) {
- return n.sentence == extend;
- });
- if (check_res2 == std::end(curr)) {
- curr.push_back(BeamElement{extend, 0.f, prob_not_blank});
- } else {
- check_res2->prob_not_blank += prob_not_blank;
- }
- }
- }
- sort(curr.begin(), curr.end(), [](const BeamElement &a, const BeamElement &b) -> bool {
- return a.prob() > b.prob();
- });
- last.clear();
- int num_to_copy = std::min(bandwidth, static_cast<int>(curr.size()));
- for (int b = 0; b < num_to_copy; b++) {
- last.push_back(curr[b]);
- }
- }
- *conf = last[0].prob();
- std::string res="";
- for (const auto& idx: last[0].sentence) {
- res += alphabet[idx];
- }
- return res;
- }
- //////////////////////////////////////////////////////////////////////
- } // anonymous namespace
- namespace custom {
- namespace {
- //////////////////////////////////////////////////////////////////////
- // Define networks for this sample
- using GMat2 = std::tuple<cv::GMat, cv::GMat>;
- G_API_NET(TextDetection,
- <GMat2(cv::GMat)>,
- "sample.custom.text_detect");
- G_API_NET(TextRecognition,
- <cv::GMat(cv::GMat)>,
- "sample.custom.text_recogn");
- // Define custom operations
- using GSize = cv::GOpaque<cv::Size>;
- using GRRects = cv::GArray<cv::RotatedRect>;
- G_API_OP(PostProcess,
- <GRRects(cv::GMat,cv::GMat,GSize,float,float)>,
- "sample.custom.text.post_proc") {
- static cv::GArrayDesc outMeta(const cv::GMatDesc &,
- const cv::GMatDesc &,
- const cv::GOpaqueDesc &,
- float,
- float) {
- return cv::empty_array_desc();
- }
- };
- using GMats = cv::GArray<cv::GMat>;
- G_API_OP(CropLabels,
- <GMats(cv::GMat,GRRects,GSize)>,
- "sample.custom.text.crop") {
- static cv::GArrayDesc outMeta(const cv::GMatDesc &,
- const cv::GArrayDesc &,
- const cv::GOpaqueDesc &) {
- return cv::empty_array_desc();
- }
- };
- //////////////////////////////////////////////////////////////////////
- // Implement custom operations
- GAPI_OCV_KERNEL(OCVPostProcess, PostProcess) {
- static void run(const cv::Mat &link,
- const cv::Mat &segm,
- const cv::Size &img_size,
- const float link_threshold,
- const float segm_threshold,
- std::vector<cv::RotatedRect> &out) {
- // NOTE: Taken from the OMZ text detection sample almost as-is
- const int kMinArea = 300;
- const int kMinHeight = 10;
- const float *link_data_pointer = link.ptr<float>();
- std::vector<float> link_data(link_data_pointer, link_data_pointer + link.total());
- link_data = transpose4d(link_data, dimsToShape(link.size), {0, 2, 3, 1});
- softmax(link_data);
- link_data = sliceAndGetSecondChannel(link_data);
- std::vector<int> new_link_data_shape = {
- link.size[0],
- link.size[2],
- link.size[3],
- link.size[1]/2,
- };
- const float *cls_data_pointer = segm.ptr<float>();
- std::vector<float> cls_data(cls_data_pointer, cls_data_pointer + segm.total());
- cls_data = transpose4d(cls_data, dimsToShape(segm.size), {0, 2, 3, 1});
- softmax(cls_data);
- cls_data = sliceAndGetSecondChannel(cls_data);
- std::vector<int> new_cls_data_shape = {
- segm.size[0],
- segm.size[2],
- segm.size[3],
- segm.size[1]/2,
- };
- out = maskToBoxes(decodeImageByJoin(cls_data, new_cls_data_shape,
- link_data, new_link_data_shape,
- segm_threshold, link_threshold),
- static_cast<float>(kMinArea),
- static_cast<float>(kMinHeight),
- img_size);
- }
- static std::vector<std::size_t> dimsToShape(const cv::MatSize &sz) {
- const int n_dims = sz.dims();
- std::vector<std::size_t> result;
- result.reserve(n_dims);
- // cv::MatSize is not iterable...
- for (int i = 0; i < n_dims; i++) {
- result.emplace_back(static_cast<std::size_t>(sz[i]));
- }
- return result;
- }
- static void softmax(std::vector<float> &rdata) {
- // NOTE: Taken from the OMZ text detection sample almost as-is
- const size_t last_dim = 2;
- for (size_t i = 0 ; i < rdata.size(); i+=last_dim) {
- float m = std::max(rdata[i], rdata[i+1]);
- rdata[i] = std::exp(rdata[i] - m);
- rdata[i + 1] = std::exp(rdata[i + 1] - m);
- float s = rdata[i] + rdata[i + 1];
- rdata[i] /= s;
- rdata[i + 1] /= s;
- }
- }
- static std::vector<float> transpose4d(const std::vector<float> &data,
- const std::vector<size_t> &shape,
- const std::vector<size_t> &axes) {
- // NOTE: Taken from the OMZ text detection sample almost as-is
- if (shape.size() != axes.size())
- throw std::runtime_error("Shape and axes must have the same dimension.");
- for (size_t a : axes) {
- if (a >= shape.size())
- throw std::runtime_error("Axis must be less than dimension of shape.");
- }
- size_t total_size = shape[0]*shape[1]*shape[2]*shape[3];
- std::vector<size_t> steps {
- shape[axes[1]]*shape[axes[2]]*shape[axes[3]],
- shape[axes[2]]*shape[axes[3]],
- shape[axes[3]],
- 1
- };
- size_t source_data_idx = 0;
- std::vector<float> new_data(total_size, 0);
- std::vector<size_t> ids(shape.size());
- for (ids[0] = 0; ids[0] < shape[0]; ids[0]++) {
- for (ids[1] = 0; ids[1] < shape[1]; ids[1]++) {
- for (ids[2] = 0; ids[2] < shape[2]; ids[2]++) {
- for (ids[3]= 0; ids[3] < shape[3]; ids[3]++) {
- size_t new_data_idx = ids[axes[0]]*steps[0] + ids[axes[1]]*steps[1] +
- ids[axes[2]]*steps[2] + ids[axes[3]]*steps[3];
- new_data[new_data_idx] = data[source_data_idx++];
- }
- }
- }
- }
- return new_data;
- }
- static std::vector<float> sliceAndGetSecondChannel(const std::vector<float> &data) {
- // NOTE: Taken from the OMZ text detection sample almost as-is
- std::vector<float> new_data(data.size() / 2, 0);
- for (size_t i = 0; i < data.size() / 2; i++) {
- new_data[i] = data[2 * i + 1];
- }
- return new_data;
- }
- static void join(const int p1,
- const int p2,
- std::unordered_map<int, int> &group_mask) {
- // NOTE: Taken from the OMZ text detection sample almost as-is
- const int root1 = findRoot(p1, group_mask);
- const int root2 = findRoot(p2, group_mask);
- if (root1 != root2) {
- group_mask[root1] = root2;
- }
- }
- static cv::Mat decodeImageByJoin(const std::vector<float> &cls_data,
- const std::vector<int> &cls_data_shape,
- const std::vector<float> &link_data,
- const std::vector<int> &link_data_shape,
- float cls_conf_threshold,
- float link_conf_threshold) {
- // NOTE: Taken from the OMZ text detection sample almost as-is
- const int h = cls_data_shape[1];
- const int w = cls_data_shape[2];
- std::vector<uchar> pixel_mask(h * w, 0);
- std::unordered_map<int, int> group_mask;
- std::vector<cv::Point> points;
- for (int i = 0; i < static_cast<int>(pixel_mask.size()); i++) {
- pixel_mask[i] = cls_data[i] >= cls_conf_threshold;
- if (pixel_mask[i]) {
- points.emplace_back(i % w, i / w);
- group_mask[i] = -1;
- }
- }
- std::vector<uchar> link_mask(link_data.size(), 0);
- for (size_t i = 0; i < link_mask.size(); i++) {
- link_mask[i] = link_data[i] >= link_conf_threshold;
- }
- size_t neighbours = size_t(link_data_shape[3]);
- for (const auto &point : points) {
- size_t neighbour = 0;
- for (int ny = point.y - 1; ny <= point.y + 1; ny++) {
- for (int nx = point.x - 1; nx <= point.x + 1; nx++) {
- if (nx == point.x && ny == point.y)
- continue;
- if (nx >= 0 && nx < w && ny >= 0 && ny < h) {
- uchar pixel_value = pixel_mask[size_t(ny) * size_t(w) + size_t(nx)];
- uchar link_value = link_mask[(size_t(point.y) * size_t(w) + size_t(point.x))
- *neighbours + neighbour];
- if (pixel_value && link_value) {
- join(point.x + point.y * w, nx + ny * w, group_mask);
- }
- }
- neighbour++;
- }
- }
- }
- return get_all(points, w, h, group_mask);
- }
- static cv::Mat get_all(const std::vector<cv::Point> &points,
- const int w,
- const int h,
- std::unordered_map<int, int> &group_mask) {
- // NOTE: Taken from the OMZ text detection sample almost as-is
- std::unordered_map<int, int> root_map;
- cv::Mat mask(h, w, CV_32S, cv::Scalar(0));
- for (const auto &point : points) {
- int point_root = findRoot(point.x + point.y * w, group_mask);
- if (root_map.find(point_root) == root_map.end()) {
- root_map.emplace(point_root, static_cast<int>(root_map.size() + 1));
- }
- mask.at<int>(point.x + point.y * w) = root_map[point_root];
- }
- return mask;
- }
- static int findRoot(const int point,
- std::unordered_map<int, int> &group_mask) {
- // NOTE: Taken from the OMZ text detection sample almost as-is
- int root = point;
- bool update_parent = false;
- while (group_mask.at(root) != -1) {
- root = group_mask.at(root);
- update_parent = true;
- }
- if (update_parent) {
- group_mask[point] = root;
- }
- return root;
- }
- static std::vector<cv::RotatedRect> maskToBoxes(const cv::Mat &mask,
- const float min_area,
- const float min_height,
- const cv::Size &image_size) {
- // NOTE: Taken from the OMZ text detection sample almost as-is
- std::vector<cv::RotatedRect> bboxes;
- double min_val = 0.;
- double max_val = 0.;
- cv::minMaxLoc(mask, &min_val, &max_val);
- int max_bbox_idx = static_cast<int>(max_val);
- cv::Mat resized_mask;
- cv::resize(mask, resized_mask, image_size, 0, 0, cv::INTER_NEAREST);
- for (int i = 1; i <= max_bbox_idx; i++) {
- cv::Mat bbox_mask = resized_mask == i;
- std::vector<std::vector<cv::Point>> contours;
- cv::findContours(bbox_mask, contours, cv::RETR_CCOMP, cv::CHAIN_APPROX_SIMPLE);
- if (contours.empty())
- continue;
- cv::RotatedRect r = cv::minAreaRect(contours[0]);
- if (std::min(r.size.width, r.size.height) < min_height)
- continue;
- if (r.size.area() < min_area)
- continue;
- bboxes.emplace_back(r);
- }
- return bboxes;
- }
- }; // GAPI_OCV_KERNEL(PostProcess)
- GAPI_OCV_KERNEL(OCVCropLabels, CropLabels) {
- static void run(const cv::Mat &image,
- const std::vector<cv::RotatedRect> &detections,
- const cv::Size &outSize,
- std::vector<cv::Mat> &out) {
- out.clear();
- out.reserve(detections.size());
- cv::Mat crop(outSize, CV_8UC3, cv::Scalar(0));
- cv::Mat gray(outSize, CV_8UC1, cv::Scalar(0));
- std::vector<int> blob_shape = {1,1,outSize.height,outSize.width};
- for (auto &&rr : detections) {
- std::vector<cv::Point2f> points(4);
- rr.points(points.data());
- const auto top_left_point_idx = topLeftPointIdx(points);
- cv::Point2f point0 = points[static_cast<size_t>(top_left_point_idx)];
- cv::Point2f point1 = points[(top_left_point_idx + 1) % 4];
- cv::Point2f point2 = points[(top_left_point_idx + 2) % 4];
- std::vector<cv::Point2f> from{point0, point1, point2};
- std::vector<cv::Point2f> to{
- cv::Point2f(0.0f, 0.0f),
- cv::Point2f(static_cast<float>(outSize.width-1), 0.0f),
- cv::Point2f(static_cast<float>(outSize.width-1),
- static_cast<float>(outSize.height-1))
- };
- cv::Mat M = cv::getAffineTransform(from, to);
- cv::warpAffine(image, crop, M, outSize);
- cv::cvtColor(crop, gray, cv::COLOR_BGR2GRAY);
- cv::Mat blob;
- gray.convertTo(blob, CV_32F);
- out.push_back(blob.reshape(1, blob_shape)); // pass as 1,1,H,W instead of H,W
- }
- }
- static int topLeftPointIdx(const std::vector<cv::Point2f> &points) {
- // NOTE: Taken from the OMZ text detection sample almost as-is
- cv::Point2f most_left(std::numeric_limits<float>::max(),
- std::numeric_limits<float>::max());
- cv::Point2f almost_most_left(std::numeric_limits<float>::max(),
- std::numeric_limits<float>::max());
- int most_left_idx = -1;
- int almost_most_left_idx = -1;
- for (size_t i = 0; i < points.size() ; i++) {
- if (most_left.x > points[i].x) {
- if (most_left.x < std::numeric_limits<float>::max()) {
- almost_most_left = most_left;
- almost_most_left_idx = most_left_idx;
- }
- most_left = points[i];
- most_left_idx = static_cast<int>(i);
- }
- if (almost_most_left.x > points[i].x && points[i] != most_left) {
- almost_most_left = points[i];
- almost_most_left_idx = static_cast<int>(i);
- }
- }
- if (almost_most_left.y < most_left.y) {
- most_left = almost_most_left;
- most_left_idx = almost_most_left_idx;
- }
- return most_left_idx;
- }
- }; // GAPI_OCV_KERNEL(CropLabels)
- } // anonymous namespace
- } // namespace custom
- namespace vis {
- namespace {
- void drawRotatedRect(cv::Mat &m, const cv::RotatedRect &rc) {
- std::vector<cv::Point2f> tmp_points(5);
- rc.points(tmp_points.data());
- tmp_points[4] = tmp_points[0];
- auto prev = tmp_points.begin(), it = prev+1;
- for (; it != tmp_points.end(); ++it) {
- cv::line(m, *prev, *it, cv::Scalar(50, 205, 50), 2);
- prev = it;
- }
- }
- void drawText(cv::Mat &m, const cv::RotatedRect &rc, const std::string &str) {
- const int fface = cv::FONT_HERSHEY_SIMPLEX;
- const double scale = 0.7;
- const int thick = 1;
- int base = 0;
- const auto text_size = cv::getTextSize(str, fface, scale, thick, &base);
- std::vector<cv::Point2f> tmp_points(4);
- rc.points(tmp_points.data());
- const auto tl_point_idx = custom::OCVCropLabels::topLeftPointIdx(tmp_points);
- cv::Point text_pos = tmp_points[tl_point_idx];
- text_pos.x = std::max(0, text_pos.x);
- text_pos.y = std::max(text_size.height, text_pos.y);
- cv::rectangle(m,
- text_pos + cv::Point{0, base},
- text_pos + cv::Point{text_size.width, -text_size.height},
- CV_RGB(50, 205, 50),
- cv::FILLED);
- const auto white = CV_RGB(255, 255, 255);
- cv::putText(m, str, text_pos, fface, scale, white, thick, 8);
- }
- } // anonymous namespace
- } // namespace vis
- int main(int argc, char *argv[])
- {
- cv::CommandLineParser cmd(argc, argv, keys);
- cmd.about(about);
- if (cmd.has("help")) {
- cmd.printMessage();
- return 0;
- }
- const auto input_file_name = cmd.get<std::string>("input");
- const auto tdet_model_path = cmd.get<std::string>("tdm");
- const auto trec_model_path = cmd.get<std::string>("trm");
- const auto tdet_target_dev = cmd.get<std::string>("tdd");
- const auto trec_target_dev = cmd.get<std::string>("trd");
- const auto ctc_beam_dec_bw = cmd.get<int>("bw");
- const auto dec_conf_thresh = cmd.get<double>("thr");
- const auto pad_symbol = '#';
- const auto symbol_set = cmd.get<std::string>("sset") + pad_symbol;
- cv::GMat in;
- cv::GOpaque<cv::Size> in_rec_sz;
- cv::GMat link, segm;
- std::tie(link, segm) = cv::gapi::infer<custom::TextDetection>(in);
- cv::GOpaque<cv::Size> size = cv::gapi::streaming::size(in);
- cv::GArray<cv::RotatedRect> rrs = custom::PostProcess::on(link, segm, size, 0.8f, 0.8f);
- cv::GArray<cv::GMat> labels = custom::CropLabels::on(in, rrs, in_rec_sz);
- cv::GArray<cv::GMat> text = cv::gapi::infer2<custom::TextRecognition>(in, labels);
- cv::GComputation graph(cv::GIn(in, in_rec_sz),
- cv::GOut(cv::gapi::copy(in), rrs, text));
- // Text detection network
- auto tdet_net = cv::gapi::ie::Params<custom::TextDetection> {
- tdet_model_path, // path to topology IR
- weights_path(tdet_model_path), // path to weights
- tdet_target_dev, // device specifier
- }.cfgOutputLayers({"model/link_logits_/add", "model/segm_logits/add"});
- auto trec_net = cv::gapi::ie::Params<custom::TextRecognition> {
- trec_model_path, // path to topology IR
- weights_path(trec_model_path), // path to weights
- trec_target_dev, // device specifier
- };
- auto networks = cv::gapi::networks(tdet_net, trec_net);
- auto kernels = cv::gapi::kernels< custom::OCVPostProcess
- , custom::OCVCropLabels
- >();
- auto pipeline = graph.compileStreaming(cv::compile_args(kernels, networks));
- std::cout << "Reading " << input_file_name << std::endl;
- // Input stream
- auto in_src = cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input_file_name);
- // Text recognition input size (also an input parameter to the graph)
- auto in_rsz = cv::Size{ 120, 32 };
- // Set the pipeline source & start the pipeline
- pipeline.setSource(cv::gin(in_src, in_rsz));
- pipeline.start();
- // Declare the output data & run the processing loop
- cv::TickMeter tm;
- cv::Mat image;
- std::vector<cv::RotatedRect> out_rcs;
- std::vector<cv::Mat> out_text;
- tm.start();
- int frames = 0;
- while (pipeline.pull(cv::gout(image, out_rcs, out_text))) {
- frames++;
- CV_Assert(out_rcs.size() == out_text.size());
- const auto num_labels = out_rcs.size();
- std::vector<cv::Point2f> tmp_points(4);
- for (std::size_t l = 0; l < num_labels; l++) {
- // Decode the recognized text in the rectangle
- const auto &blob = out_text[l];
- const float *data = blob.ptr<float>();
- const auto sz = blob.total();
- double conf = 1.0;
- const std::string res = ctc_beam_dec_bw == 0
- ? CTCGreedyDecoder(data, sz, symbol_set, pad_symbol, &conf)
- : CTCBeamSearchDecoder(data, sz, symbol_set, &conf, ctc_beam_dec_bw);
- // Draw a bounding box for this rotated rectangle
- const auto &rc = out_rcs[l];
- vis::drawRotatedRect(image, rc);
- // Draw text, if decoded
- if (conf >= dec_conf_thresh) {
- vis::drawText(image, rc, res);
- }
- }
- tm.stop();
- cv::imshow("Out", image);
- cv::waitKey(1);
- tm.start();
- }
- tm.stop();
- std::cout << "Processed " << frames << " frames"
- << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
- return 0;
- }
|