123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184 |
- #include <opencv2/imgproc.hpp>
- #include <opencv2/gapi/infer/ie.hpp>
- #include <opencv2/gapi/cpu/gcpukernel.hpp>
- #include <opencv2/gapi/streaming/cap.hpp>
- #include <opencv2/gapi/operators.hpp>
- #include <opencv2/highgui.hpp>
- const std::string keys =
- "{ h help | | Print this help message }"
- "{ input | | Path to the input video file }"
- "{ output | | Path to the output video file }"
- "{ ssm | semantic-segmentation-adas-0001.xml | Path to OpenVINO IE semantic segmentation model (.xml) }";
- // 20 colors for 20 classes of semantic-segmentation-adas-0001
- const std::vector<cv::Vec3b> colors = {
- { 128, 64, 128 },
- { 232, 35, 244 },
- { 70, 70, 70 },
- { 156, 102, 102 },
- { 153, 153, 190 },
- { 153, 153, 153 },
- { 30, 170, 250 },
- { 0, 220, 220 },
- { 35, 142, 107 },
- { 152, 251, 152 },
- { 180, 130, 70 },
- { 60, 20, 220 },
- { 0, 0, 255 },
- { 142, 0, 0 },
- { 70, 0, 0 },
- { 100, 60, 0 },
- { 90, 0, 0 },
- { 230, 0, 0 },
- { 32, 11, 119 },
- { 0, 74, 111 },
- };
- namespace {
- std::string get_weights_path(const std::string &model_path) {
- const auto EXT_LEN = 4u;
- const auto sz = model_path.size();
- CV_Assert(sz > EXT_LEN);
- auto ext = model_path.substr(sz - EXT_LEN);
- std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){
- return static_cast<unsigned char>(std::tolower(c));
- });
- CV_Assert(ext == ".xml");
- return model_path.substr(0u, sz - EXT_LEN) + ".bin";
- }
- void classesToColors(const cv::Mat &out_blob,
- cv::Mat &mask_img) {
- const int H = out_blob.size[0];
- const int W = out_blob.size[1];
- mask_img.create(H, W, CV_8UC3);
- GAPI_Assert(out_blob.type() == CV_8UC1);
- const uint8_t* const classes = out_blob.ptr<uint8_t>();
- for (int rowId = 0; rowId < H; ++rowId) {
- for (int colId = 0; colId < W; ++colId) {
- uint8_t class_id = classes[rowId * W + colId];
- mask_img.at<cv::Vec3b>(rowId, colId) =
- class_id < colors.size()
- ? colors[class_id]
- : cv::Vec3b{0, 0, 0}; // NB: sample supports 20 classes
- }
- }
- }
- void probsToClasses(const cv::Mat& probs, cv::Mat& classes) {
- const int C = probs.size[1];
- const int H = probs.size[2];
- const int W = probs.size[3];
- classes.create(H, W, CV_8UC1);
- GAPI_Assert(probs.depth() == CV_32F);
- float* out_p = reinterpret_cast<float*>(probs.data);
- uint8_t* classes_p = reinterpret_cast<uint8_t*>(classes.data);
- for (int h = 0; h < H; ++h) {
- for (int w = 0; w < W; ++w) {
- double max = 0;
- int class_id = 0;
- for (int c = 0; c < C; ++c) {
- int idx = c * H * W + h * W + w;
- if (out_p[idx] > max) {
- max = out_p[idx];
- class_id = c;
- }
- }
- classes_p[h * W + w] = static_cast<uint8_t>(class_id);
- }
- }
- }
- } // anonymous namespace
- namespace custom {
- G_API_OP(PostProcessing, <cv::GMat(cv::GMat, cv::GMat)>, "sample.custom.post_processing") {
- static cv::GMatDesc outMeta(const cv::GMatDesc &in, const cv::GMatDesc &) {
- return in;
- }
- };
- GAPI_OCV_KERNEL(OCVPostProcessing, PostProcessing) {
- static void run(const cv::Mat &in, const cv::Mat &out_blob, cv::Mat &out) {
- cv::Mat classes;
- // NB: If output has more than single plane, it contains probabilities
- // otherwise class id.
- if (out_blob.size[1] > 1) {
- probsToClasses(out_blob, classes);
- } else {
- out_blob.convertTo(classes, CV_8UC1);
- classes = classes.reshape(1, out_blob.size[2]);
- }
- cv::Mat mask_img;
- classesToColors(classes, mask_img);
- cv::resize(mask_img, out, in.size());
- }
- };
- } // namespace custom
- int main(int argc, char *argv[]) {
- cv::CommandLineParser cmd(argc, argv, keys);
- if (cmd.has("help")) {
- cmd.printMessage();
- return 0;
- }
- // Prepare parameters first
- const std::string input = cmd.get<std::string>("input");
- const std::string output = cmd.get<std::string>("output");
- const auto model_path = cmd.get<std::string>("ssm");
- const auto weights_path = get_weights_path(model_path);
- const auto device = "CPU";
- G_API_NET(SemSegmNet, <cv::GMat(cv::GMat)>, "semantic-segmentation");
- const auto net = cv::gapi::ie::Params<SemSegmNet> {
- model_path, weights_path, device
- };
- const auto kernels = cv::gapi::kernels<custom::OCVPostProcessing>();
- const auto networks = cv::gapi::networks(net);
- // Now build the graph
- cv::GMat in;
- cv::GMat out_blob = cv::gapi::infer<SemSegmNet>(in);
- cv::GMat post_proc_out = custom::PostProcessing::on(in, out_blob);
- cv::GMat blending_in = in * 0.3f;
- cv::GMat blending_out = post_proc_out * 0.7f;
- cv::GMat out = blending_in + blending_out;
- cv::GStreamingCompiled pipeline = cv::GComputation(cv::GIn(in), cv::GOut(out))
- .compileStreaming(cv::compile_args(kernels, networks));
- auto inputs = cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input));
- // The execution part
- pipeline.setSource(std::move(inputs));
- cv::VideoWriter writer;
- cv::TickMeter tm;
- cv::Mat outMat;
- std::size_t frames = 0u;
- tm.start();
- pipeline.start();
- while (pipeline.pull(cv::gout(outMat))) {
- ++frames;
- cv::imshow("Out", outMat);
- cv::waitKey(1);
- if (!output.empty()) {
- if (!writer.isOpened()) {
- const auto sz = cv::Size{outMat.cols, outMat.rows};
- writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz);
- CV_Assert(writer.isOpened());
- }
- writer << outMat;
- }
- }
- tm.stop();
- std::cout << "Processed " << frames << " frames" << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
- return 0;
- }
|