123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159 |
- #include <algorithm>
- #include <iostream>
- #include <sstream>
- #include <opencv2/imgproc.hpp>
- #include <opencv2/imgcodecs.hpp>
- #include <opencv2/gapi.hpp>
- #include <opencv2/gapi/core.hpp>
- #include <opencv2/gapi/imgproc.hpp>
- #include <opencv2/gapi/infer.hpp>
- #include <opencv2/gapi/render.hpp>
- #include <opencv2/gapi/infer/onnx.hpp>
- #include <opencv2/gapi/cpu/gcpukernel.hpp>
- #include <opencv2/gapi/streaming/cap.hpp>
- #include <opencv2/highgui.hpp>
- #include <opencv2/gapi/infer/parsers.hpp>
- namespace custom {
- G_API_NET(ObjDetector, <cv::GMat(cv::GMat)>, "object-detector");
- using GDetections = cv::GArray<cv::Rect>;
- using GSize = cv::GOpaque<cv::Size>;
- using GPrims = cv::GArray<cv::gapi::wip::draw::Prim>;
- G_API_OP(BBoxes, <GPrims(GDetections)>, "sample.custom.b-boxes") {
- static cv::GArrayDesc outMeta(const cv::GArrayDesc &) {
- return cv::empty_array_desc();
- }
- };
- GAPI_OCV_KERNEL(OCVBBoxes, BBoxes) {
- // This kernel converts the rectangles into G-API's
- // rendering primitives
- static void run(const std::vector<cv::Rect> &in_obj_rcs,
- std::vector<cv::gapi::wip::draw::Prim> &out_prims) {
- out_prims.clear();
- const auto cvt = [](const cv::Rect &rc, const cv::Scalar &clr) {
- return cv::gapi::wip::draw::Rect(rc, clr, 2);
- };
- for (auto &&rc : in_obj_rcs) {
- out_prims.emplace_back(cvt(rc, CV_RGB(0,255,0))); // green
- }
- std::cout << "Detections:";
- for (auto &&rc : in_obj_rcs) std::cout << ' ' << rc;
- std::cout << std::endl;
- }
- };
- } // namespace custom
- namespace {
- void remap_ssd_ports(const std::unordered_map<std::string, cv::Mat> &onnx,
- std::unordered_map<std::string, cv::Mat> &gapi) {
- // Assemble ONNX-processed outputs back to a single 1x1x200x7 blob
- // to preserve compatibility with OpenVINO-based SSD pipeline
- const cv::Mat &num_detections = onnx.at("num_detections:0");
- const cv::Mat &detection_boxes = onnx.at("detection_boxes:0");
- const cv::Mat &detection_scores = onnx.at("detection_scores:0");
- const cv::Mat &detection_classes = onnx.at("detection_classes:0");
- GAPI_Assert(num_detections.depth() == CV_32F);
- GAPI_Assert(detection_boxes.depth() == CV_32F);
- GAPI_Assert(detection_scores.depth() == CV_32F);
- GAPI_Assert(detection_classes.depth() == CV_32F);
- cv::Mat &ssd_output = gapi.at("detection_output");
- const int num_objects = static_cast<int>(num_detections.ptr<float>()[0]);
- const float *in_boxes = detection_boxes.ptr<float>();
- const float *in_scores = detection_scores.ptr<float>();
- const float *in_classes = detection_classes.ptr<float>();
- float *ptr = ssd_output.ptr<float>();
- for (int i = 0; i < num_objects; i++) {
- ptr[0] = 0.f; // "image_id"
- ptr[1] = in_classes[i]; // "label"
- ptr[2] = in_scores[i]; // "confidence"
- ptr[3] = in_boxes[4*i + 1]; // left
- ptr[4] = in_boxes[4*i + 0]; // top
- ptr[5] = in_boxes[4*i + 3]; // right
- ptr[6] = in_boxes[4*i + 2]; // bottom
- ptr += 7;
- in_boxes += 4;
- }
- if (num_objects < ssd_output.size[2]-1) {
- // put a -1 mark at the end of output blob if there is space left
- ptr[0] = -1.f;
- }
- }
- } // anonymous namespace
- const std::string keys =
- "{ h help | | Print this help message }"
- "{ input | | Path to the input video file }"
- "{ output | | (Optional) path to output video file }"
- "{ detm | | Path to an ONNX SSD object detection model (.onnx) }"
- ;
- int main(int argc, char *argv[])
- {
- cv::CommandLineParser cmd(argc, argv, keys);
- if (cmd.has("help")) {
- cmd.printMessage();
- return 0;
- }
- // Prepare parameters first
- const std::string input = cmd.get<std::string>("input");
- const std::string output = cmd.get<std::string>("output");
- const auto obj_model_path = cmd.get<std::string>("detm");
- auto obj_net = cv::gapi::onnx::Params<custom::ObjDetector>{obj_model_path}
- .cfgOutputLayers({"detection_output"})
- .cfgPostProc({cv::GMatDesc{CV_32F, {1,1,200,7}}}, remap_ssd_ports);
- auto kernels = cv::gapi::kernels<custom::OCVBBoxes>();
- auto networks = cv::gapi::networks(obj_net);
- // Now build the graph
- cv::GMat in;
- auto blob = cv::gapi::infer<custom::ObjDetector>(in);
- cv::GArray<cv::Rect> rcs =
- cv::gapi::parseSSD(blob, cv::gapi::streaming::size(in), 0.5f, true, true);
- auto out = cv::gapi::wip::draw::render3ch(in, custom::BBoxes::on(rcs));
- cv::GStreamingCompiled pipeline = cv::GComputation(cv::GIn(in), cv::GOut(out))
- .compileStreaming(cv::compile_args(kernels, networks));
- auto inputs = cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input));
- // The execution part
- pipeline.setSource(std::move(inputs));
- cv::TickMeter tm;
- cv::VideoWriter writer;
- size_t frames = 0u;
- cv::Mat outMat;
- tm.start();
- pipeline.start();
- while (pipeline.pull(cv::gout(outMat))) {
- ++frames;
- cv::imshow("Out", outMat);
- cv::waitKey(1);
- if (!output.empty()) {
- if (!writer.isOpened()) {
- const auto sz = cv::Size{outMat.cols, outMat.rows};
- writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz);
- CV_Assert(writer.isOpened());
- }
- writer << outMat;
- }
- }
- tm.stop();
- std::cout << "Processed " << frames << " frames" << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
- return 0;
- }
|