123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202 |
- #include <algorithm>
- #include <iostream>
- #include <sstream>
- #include <opencv2/imgproc.hpp>
- #include <opencv2/imgcodecs.hpp>
- #include <opencv2/gapi.hpp>
- #include <opencv2/gapi/core.hpp>
- #include <opencv2/gapi/imgproc.hpp>
- #include <opencv2/gapi/infer.hpp>
- #include <opencv2/gapi/render.hpp>
- #include <opencv2/gapi/infer/ie.hpp>
- #include <opencv2/gapi/cpu/gcpukernel.hpp>
- #include <opencv2/gapi/streaming/cap.hpp>
- #include <opencv2/highgui.hpp>
- #include <opencv2/gapi/infer/parsers.hpp>
- const std::string keys =
- "{ h help | | Print this help message }"
- "{ input | | Path to the input video file }"
- "{ facem | face-detection-adas-0001.xml | Path to OpenVINO IE face detection model (.xml) }"
- "{ faced | CPU | Target device for face detection model (e.g. CPU, GPU, VPU, ...) }"
- "{ r roi | -1,-1,-1,-1 | Region of interest (ROI) to use for inference. Identified automatically when not set }";
- namespace {
- std::string weights_path(const std::string &model_path) {
- const auto EXT_LEN = 4u;
- const auto sz = model_path.size();
- CV_Assert(sz > EXT_LEN);
- auto ext = model_path.substr(sz - EXT_LEN);
- std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){
- return static_cast<unsigned char>(std::tolower(c));
- });
- CV_Assert(ext == ".xml");
- return model_path.substr(0u, sz - EXT_LEN) + ".bin";
- }
- cv::util::optional<cv::Rect> parse_roi(const std::string &rc) {
- cv::Rect rv;
- char delim[3];
- std::stringstream is(rc);
- is >> rv.x >> delim[0] >> rv.y >> delim[1] >> rv.width >> delim[2] >> rv.height;
- if (is.bad()) {
- return cv::util::optional<cv::Rect>(); // empty value
- }
- const auto is_delim = [](char c) {
- return c == ',';
- };
- if (!std::all_of(std::begin(delim), std::end(delim), is_delim)) {
- return cv::util::optional<cv::Rect>(); // empty value
- }
- if (rv.x < 0 || rv.y < 0 || rv.width <= 0 || rv.height <= 0) {
- return cv::util::optional<cv::Rect>(); // empty value
- }
- return cv::util::make_optional(std::move(rv));
- }
- } // namespace
- namespace custom {
- G_API_NET(FaceDetector, <cv::GMat(cv::GMat)>, "face-detector");
- using GDetections = cv::GArray<cv::Rect>;
- using GRect = cv::GOpaque<cv::Rect>;
- using GSize = cv::GOpaque<cv::Size>;
- using GPrims = cv::GArray<cv::gapi::wip::draw::Prim>;
- G_API_OP(LocateROI, <GRect(cv::GMat)>, "sample.custom.locate-roi") {
- static cv::GOpaqueDesc outMeta(const cv::GMatDesc &) {
- return cv::empty_gopaque_desc();
- }
- };
- G_API_OP(BBoxes, <GPrims(GDetections, GRect)>, "sample.custom.b-boxes") {
- static cv::GArrayDesc outMeta(const cv::GArrayDesc &, const cv::GOpaqueDesc &) {
- return cv::empty_array_desc();
- }
- };
- GAPI_OCV_KERNEL(OCVLocateROI, LocateROI) {
- // This is the place where we can run extra analytics
- // on the input image frame and select the ROI (region
- // of interest) where we want to detect our objects (or
- // run any other inference).
- //
- // Currently it doesn't do anything intelligent,
- // but only crops the input image to square (this is
- // the most convenient aspect ratio for detectors to use)
- static void run(const cv::Mat &in_mat, cv::Rect &out_rect) {
- // Identify the central point & square size (- some padding)
- const auto center = cv::Point{in_mat.cols/2, in_mat.rows/2};
- auto sqside = std::min(in_mat.cols, in_mat.rows);
- // Now build the central square ROI
- out_rect = cv::Rect{ center.x - sqside/2
- , center.y - sqside/2
- , sqside
- , sqside
- };
- }
- };
- GAPI_OCV_KERNEL(OCVBBoxes, BBoxes) {
- // This kernel converts the rectangles into G-API's
- // rendering primitives
- static void run(const std::vector<cv::Rect> &in_face_rcs,
- const cv::Rect &in_roi,
- std::vector<cv::gapi::wip::draw::Prim> &out_prims) {
- out_prims.clear();
- const auto cvt = [](const cv::Rect &rc, const cv::Scalar &clr) {
- return cv::gapi::wip::draw::Rect(rc, clr, 2);
- };
- out_prims.emplace_back(cvt(in_roi, CV_RGB(0,255,255))); // cyan
- for (auto &&rc : in_face_rcs) {
- out_prims.emplace_back(cvt(rc, CV_RGB(0,255,0))); // green
- }
- }
- };
- } // namespace custom
- int main(int argc, char *argv[])
- {
- cv::CommandLineParser cmd(argc, argv, keys);
- if (cmd.has("help")) {
- cmd.printMessage();
- return 0;
- }
- // Prepare parameters first
- const std::string input = cmd.get<std::string>("input");
- const auto opt_roi = parse_roi(cmd.get<std::string>("roi"));
- const auto face_model_path = cmd.get<std::string>("facem");
- auto face_net = cv::gapi::ie::Params<custom::FaceDetector> {
- face_model_path, // path to topology IR
- weights_path(face_model_path), // path to weights
- cmd.get<std::string>("faced"), // device specifier
- };
- auto kernels = cv::gapi::kernels
- <custom::OCVLocateROI
- , custom::OCVBBoxes>();
- auto networks = cv::gapi::networks(face_net);
- // Now build the graph. The graph structure may vary
- // pased on the input parameters
- cv::GStreamingCompiled pipeline;
- auto inputs = cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input));
- cv::GMat in;
- cv::GOpaque<cv::Size> sz = cv::gapi::streaming::size(in);
- if (opt_roi.has_value()) {
- // Use the value provided by user
- std::cout << "Will run inference for static region "
- << opt_roi.value()
- << " only"
- << std::endl;
- cv::GOpaque<cv::Rect> in_roi;
- auto blob = cv::gapi::infer<custom::FaceDetector>(in_roi, in);
- cv::GArray<cv::Rect> rcs = cv::gapi::parseSSD(blob, sz, 0.5f, true, true);
- auto out = cv::gapi::wip::draw::render3ch(in, custom::BBoxes::on(rcs, in_roi));
- pipeline = cv::GComputation(cv::GIn(in, in_roi), cv::GOut(out))
- .compileStreaming(cv::compile_args(kernels, networks));
- // Since the ROI to detect is manual, make it part of the input vector
- inputs.push_back(cv::gin(opt_roi.value())[0]);
- } else {
- // Automatically detect ROI to infer. Make it output parameter
- std::cout << "ROI is not set or invalid. Locating it automatically"
- << std::endl;
- cv::GOpaque<cv::Rect> roi = custom::LocateROI::on(in);
- auto blob = cv::gapi::infer<custom::FaceDetector>(roi, in);
- cv::GArray<cv::Rect> rcs = cv::gapi::parseSSD(blob, sz, 0.5f, true, true);
- auto out = cv::gapi::wip::draw::render3ch(in, custom::BBoxes::on(rcs, roi));
- pipeline = cv::GComputation(cv::GIn(in), cv::GOut(out))
- .compileStreaming(cv::compile_args(kernels, networks));
- }
- // The execution part
- pipeline.setSource(std::move(inputs));
- pipeline.start();
- cv::Mat out;
- size_t frames = 0u;
- cv::TickMeter tm;
- tm.start();
- while (pipeline.pull(cv::gout(out))) {
- cv::imshow("Out", out);
- cv::waitKey(1);
- ++frames;
- }
- tm.stop();
- std::cout << "Processed " << frames << " frames" << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
- return 0;
- }
|