123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- #define sign(a) a > 0 ? 1 : a == 0 ? 0 : -1
- #define CORE_EIGEN_ERROR_COUNT 1
- #define CORE_EIGEN_ERROR_SIZE 2
- #define CORE_EIGEN_ERROR_DIFF 3
- #define CORE_EIGEN_ERROR_ORTHO 4
- #define CORE_EIGEN_ERROR_ORDER 5
- #define MESSAGE_ERROR_COUNT "Matrix of eigen values must have the same rows as source matrix and 1 column."
- #define MESSAGE_ERROR_SIZE "Source matrix and matrix of eigen vectors must have the same sizes."
- #define MESSAGE_ERROR_DIFF_1 "Accuracy of eigen values computing less than required."
- #define MESSAGE_ERROR_DIFF_2 "Accuracy of eigen vectors computing less than required."
- #define MESSAGE_ERROR_ORTHO "Matrix of eigen vectors is not orthogonal."
- #define MESSAGE_ERROR_ORDER "Eigen values are not sorted in descending order."
- const int COUNT_NORM_TYPES = 3;
- const int NORM_TYPE[COUNT_NORM_TYPES] = {cv::NORM_L1, cv::NORM_L2, cv::NORM_INF};
- enum TASK_TYPE_EIGEN {VALUES, VECTORS};
- class Core_EigenTest: public cvtest::BaseTest
- {
- public:
- Core_EigenTest();
- ~Core_EigenTest();
- protected:
- bool test_values(const cv::Mat& src); // complex test for eigen without vectors
- bool check_full(int type); // complex test for symmetric matrix
- virtual void run (int) = 0; // main testing method
- protected:
- float eps_val_32, eps_vec_32;
- float eps_val_64, eps_vec_64;
- int ntests;
- bool check_pair_count(const cv::Mat& src, const cv::Mat& evalues, int low_index = -1, int high_index = -1);
- bool check_pair_count(const cv::Mat& src, const cv::Mat& evalues, const cv::Mat& evectors, int low_index = -1, int high_index = -1);
- bool check_pairs_order(const cv::Mat& eigen_values); // checking order of eigen values & vectors (it should be none up)
- bool check_orthogonality(const cv::Mat& U); // checking is matrix of eigen vectors orthogonal
- bool test_pairs(const cv::Mat& src); // complex test for eigen with vectors
- void print_information(const size_t norm_idx, const cv::Mat& src, double diff, double max_diff);
- };
- class Core_EigenTest_Scalar : public Core_EigenTest
- {
- public:
- Core_EigenTest_Scalar() : Core_EigenTest() {}
- ~Core_EigenTest_Scalar();
- virtual void run(int) = 0;
- };
- class Core_EigenTest_Scalar_32 : public Core_EigenTest_Scalar
- {
- public:
- Core_EigenTest_Scalar_32() : Core_EigenTest_Scalar() {}
- ~Core_EigenTest_Scalar_32();
- void run(int);
- };
- class Core_EigenTest_Scalar_64 : public Core_EigenTest_Scalar
- {
- public:
- Core_EigenTest_Scalar_64() : Core_EigenTest_Scalar() {}
- ~Core_EigenTest_Scalar_64();
- void run(int);
- };
- class Core_EigenTest_32 : public Core_EigenTest
- {
- public:
- Core_EigenTest_32(): Core_EigenTest() {}
- ~Core_EigenTest_32() {}
- void run(int);
- };
- class Core_EigenTest_64 : public Core_EigenTest
- {
- public:
- Core_EigenTest_64(): Core_EigenTest() {}
- ~Core_EigenTest_64() {}
- void run(int);
- };
- Core_EigenTest_Scalar::~Core_EigenTest_Scalar() {}
- Core_EigenTest_Scalar_32::~Core_EigenTest_Scalar_32() {}
- Core_EigenTest_Scalar_64::~Core_EigenTest_Scalar_64() {}
- void Core_EigenTest_Scalar_32::run(int)
- {
- for (int i = 0; i < ntests; ++i)
- {
- float value = cv::randu<float>();
- cv::Mat src(1, 1, CV_32FC1, Scalar::all((float)value));
- test_values(src);
- }
- }
- void Core_EigenTest_Scalar_64::run(int)
- {
- for (int i = 0; i < ntests; ++i)
- {
- float value = cv::randu<float>();
- cv::Mat src(1, 1, CV_64FC1, Scalar::all((double)value));
- test_values(src);
- }
- }
- void Core_EigenTest_32::run(int) { check_full(CV_32FC1); }
- void Core_EigenTest_64::run(int) { check_full(CV_64FC1); }
- Core_EigenTest::Core_EigenTest()
- : eps_val_32(1e-3f), eps_vec_32(1e-3f),
- eps_val_64(1e-4f), eps_vec_64(1e-4f), ntests(100) {}
- Core_EigenTest::~Core_EigenTest() {}
- bool Core_EigenTest::check_pair_count(const cv::Mat& src, const cv::Mat& evalues, int low_index, int high_index)
- {
- int n = src.rows, s = sign(high_index);
- if (!( (evalues.rows == n - max<int>(0, low_index) - ((int)((n/2.0)*(s*s-s)) + (1+s-s*s)*(n - (high_index+1)))) && (evalues.cols == 1)))
- {
- std::cout << endl; std::cout << "Checking sizes of eigen values matrix " << evalues << "..." << endl;
- std::cout << "Number of rows: " << evalues.rows << " Number of cols: " << evalues.cols << endl;
- std::cout << "Size of src symmetric matrix: " << src.rows << " * " << src.cols << endl; std::cout << endl;
- CV_Error(CORE_EIGEN_ERROR_COUNT, MESSAGE_ERROR_COUNT);
- }
- return true;
- }
- bool Core_EigenTest::check_pair_count(const cv::Mat& src, const cv::Mat& evalues, const cv::Mat& evectors, int low_index, int high_index)
- {
- int n = src.rows, s = sign(high_index);
- int right_eigen_pair_count = n - max<int>(0, low_index) - ((int)((n/2.0)*(s*s-s)) + (1+s-s*s)*(n - (high_index+1)));
- if (!(evectors.rows == right_eigen_pair_count && evectors.cols == right_eigen_pair_count))
- {
- std::cout << endl; std::cout << "Checking sizes of eigen vectors matrix " << evectors << "..." << endl;
- std::cout << "Number of rows: " << evectors.rows << " Number of cols: " << evectors.cols << endl;
- std:: cout << "Size of src symmetric matrix: " << src.rows << " * " << src.cols << endl; std::cout << endl;
- CV_Error (CORE_EIGEN_ERROR_SIZE, MESSAGE_ERROR_SIZE);
- }
- if (!(evalues.rows == right_eigen_pair_count && evalues.cols == 1))
- {
- std::cout << endl; std::cout << "Checking sizes of eigen values matrix " << evalues << "..." << endl;
- std::cout << "Number of rows: " << evalues.rows << " Number of cols: " << evalues.cols << endl;
- std:: cout << "Size of src symmetric matrix: " << src.rows << " * " << src.cols << endl; std::cout << endl;
- CV_Error (CORE_EIGEN_ERROR_COUNT, MESSAGE_ERROR_COUNT);
- }
- return true;
- }
- void Core_EigenTest::print_information(const size_t norm_idx, const cv::Mat& src, double diff, double max_diff)
- {
- switch (NORM_TYPE[norm_idx])
- {
- case cv::NORM_L1: std::cout << "L1"; break;
- case cv::NORM_L2: std::cout << "L2"; break;
- case cv::NORM_INF: std::cout << "INF"; break;
- default: break;
- }
- cout << "-criteria... " << endl;
- cout << "Source size: " << src.rows << " * " << src.cols << endl;
- cout << "Difference between original eigen vectors matrix and result: " << diff << endl;
- cout << "Maximum allowed difference: " << max_diff << endl; cout << endl;
- }
- bool Core_EigenTest::check_orthogonality(const cv::Mat& U)
- {
- int type = U.type();
- double eps_vec = type == CV_32FC1 ? eps_vec_32 : eps_vec_64;
- cv::Mat UUt; cv::mulTransposed(U, UUt, false);
- cv::Mat E = Mat::eye(U.rows, U.cols, type);
- for (int i = 0; i < COUNT_NORM_TYPES; ++i)
- {
- double diff = cvtest::norm(UUt, E, NORM_TYPE[i] | cv::NORM_RELATIVE);
- if (diff > eps_vec)
- {
- std::cout << endl; std::cout << "Checking orthogonality of matrix " << U << ": ";
- print_information(i, U, diff, eps_vec);
- CV_Error(CORE_EIGEN_ERROR_ORTHO, MESSAGE_ERROR_ORTHO);
- }
- }
- return true;
- }
- bool Core_EigenTest::check_pairs_order(const cv::Mat& eigen_values)
- {
- switch (eigen_values.type())
- {
- case CV_32FC1:
- {
- for (int i = 0; i < (int)(eigen_values.total() - 1); ++i)
- if (!(eigen_values.at<float>(i, 0) > eigen_values.at<float>(i+1, 0)))
- {
- std::cout << endl; std::cout << "Checking order of eigen values vector " << eigen_values << "..." << endl;
- std::cout << "Pair of indexes with non descending of eigen values: (" << i << ", " << i+1 << ")." << endl;
- std::cout << endl;
- CV_Error(CORE_EIGEN_ERROR_ORDER, MESSAGE_ERROR_ORDER);
- }
- break;
- }
- case CV_64FC1:
- {
- for (int i = 0; i < (int)(eigen_values.total() - 1); ++i)
- if (!(eigen_values.at<double>(i, 0) > eigen_values.at<double>(i+1, 0)))
- {
- std::cout << endl; std::cout << "Checking order of eigen values vector " << eigen_values << "..." << endl;
- std::cout << "Pair of indexes with non descending of eigen values: (" << i << ", " << i+1 << ")." << endl;
- std::cout << endl;
- CV_Error(CORE_EIGEN_ERROR_ORDER, "Eigen values are not sorted in descending order.");
- }
- break;
- }
- default:;
- }
- return true;
- }
- bool Core_EigenTest::test_pairs(const cv::Mat& src)
- {
- int type = src.type();
- double eps_vec = type == CV_32FC1 ? eps_vec_32 : eps_vec_64;
- cv::Mat eigen_values, eigen_vectors;
- cv::eigen(src, eigen_values, eigen_vectors);
- if (!check_pair_count(src, eigen_values, eigen_vectors))
- return false;
- if (!check_orthogonality (eigen_vectors))
- return false;
- if (!check_pairs_order(eigen_values))
- return false;
- cv::Mat eigen_vectors_t; cv::transpose(eigen_vectors, eigen_vectors_t);
- // Check:
- // src * eigenvector = eigenval * eigenvector
- cv::Mat lhs(src.rows, src.cols, type);
- cv::Mat rhs(src.rows, src.cols, type);
- lhs = src*eigen_vectors_t;
- for (int i = 0; i < src.cols; ++i)
- {
- double eigenval = 0;
- switch (type)
- {
- case CV_32FC1: eigenval = eigen_values.at<float>(i, 0); break;
- case CV_64FC1: eigenval = eigen_values.at<double>(i, 0); break;
- }
- cv::Mat rhs_v = eigenval * eigen_vectors_t.col(i);
- rhs_v.copyTo(rhs.col(i));
- }
- for (int i = 0; i < COUNT_NORM_TYPES; ++i)
- {
- double diff = cvtest::norm(lhs, rhs, NORM_TYPE[i] | cv::NORM_RELATIVE);
- if (diff > eps_vec)
- {
- std::cout << endl; std::cout << "Checking accuracy of eigen vectors computing for matrix " << src << ": ";
- print_information(i, src, diff, eps_vec);
- CV_Error(CORE_EIGEN_ERROR_DIFF, MESSAGE_ERROR_DIFF_2);
- }
- }
- return true;
- }
- bool Core_EigenTest::test_values(const cv::Mat& src)
- {
- int type = src.type();
- double eps_val = type == CV_32FC1 ? eps_val_32 : eps_val_64;
- cv::Mat eigen_values_1, eigen_values_2, eigen_vectors;
- if (!test_pairs(src)) return false;
- cv::eigen(src, eigen_values_1, eigen_vectors);
- cv::eigen(src, eigen_values_2);
- if (!check_pair_count(src, eigen_values_2)) return false;
- for (int i = 0; i < COUNT_NORM_TYPES; ++i)
- {
- double diff = cvtest::norm(eigen_values_1, eigen_values_2, NORM_TYPE[i] | cv::NORM_RELATIVE);
- if (diff > eps_val)
- {
- std::cout << endl; std::cout << "Checking accuracy of eigen values computing for matrix " << src << ": ";
- print_information(i, src, diff, eps_val);
- CV_Error(CORE_EIGEN_ERROR_DIFF, MESSAGE_ERROR_DIFF_1);
- }
- }
- return true;
- }
- bool Core_EigenTest::check_full(int type)
- {
- const int MAX_DEGREE = 7;
- RNG rng = cv::theRNG(); // fix the seed
- for (int i = 0; i < ntests; ++i)
- {
- int src_size = (int)(std::pow(2.0, (rng.uniform(0, MAX_DEGREE) + 1.)));
- cv::Mat src(src_size, src_size, type);
- for (int j = 0; j < src.rows; ++j)
- for (int k = j; k < src.cols; ++k)
- if (type == CV_32FC1) src.at<float>(k, j) = src.at<float>(j, k) = cv::randu<float>();
- else src.at<double>(k, j) = src.at<double>(j, k) = cv::randu<double>();
- if (!test_values(src)) return false;
- }
- return true;
- }
- TEST(Core_Eigen, scalar_32) {Core_EigenTest_Scalar_32 test; test.safe_run(); }
- TEST(Core_Eigen, scalar_64) {Core_EigenTest_Scalar_64 test; test.safe_run(); }
- TEST(Core_Eigen, vector_32) { Core_EigenTest_32 test; test.safe_run(); }
- TEST(Core_Eigen, vector_64) { Core_EigenTest_64 test; test.safe_run(); }
- template<typename T>
- static void testEigen(const Mat_<T>& src, const Mat_<T>& expected_eigenvalues, bool runSymmetric = false)
- {
- SCOPED_TRACE(runSymmetric ? "cv::eigen" : "cv::eigenNonSymmetric");
- int type = traits::Type<T>::value;
- const T eps = src.type() == CV_32F ? 1e-4f : 1e-6f;
- Mat eigenvalues, eigenvectors, eigenvalues0;
- if (runSymmetric)
- {
- cv::eigen(src, eigenvalues0, noArray());
- cv::eigen(src, eigenvalues, eigenvectors);
- }
- else
- {
- cv::eigenNonSymmetric(src, eigenvalues0, noArray());
- cv::eigenNonSymmetric(src, eigenvalues, eigenvectors);
- }
- #if 0
- std::cout << "src = " << src << std::endl;
- std::cout << "eigenvalues.t() = " << eigenvalues.t() << std::endl;
- std::cout << "eigenvectors = " << eigenvectors << std::endl;
- #endif
- ASSERT_EQ(type, eigenvalues0.type());
- ASSERT_EQ(type, eigenvalues.type());
- ASSERT_EQ(type, eigenvectors.type());
- ASSERT_EQ(src.rows, eigenvalues.rows);
- ASSERT_EQ(eigenvalues.rows, eigenvectors.rows);
- ASSERT_EQ(src.rows, eigenvectors.cols);
- EXPECT_LT(cvtest::norm(eigenvalues, eigenvalues0, NORM_INF), eps);
- // check definition: src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
- for (int i = 0; i < src.rows; i++)
- {
- EXPECT_NEAR(eigenvalues.at<T>(i), expected_eigenvalues(i), eps) << "i=" << i;
- Mat lhs = src*eigenvectors.row(i).t();
- Mat rhs = eigenvalues.at<T>(i)*eigenvectors.row(i).t();
- EXPECT_LT(cvtest::norm(lhs, rhs, NORM_INF), eps)
- << "i=" << i << " eigenvalue=" << eigenvalues.at<T>(i) << std::endl
- << "lhs=" << lhs.t() << std::endl
- << "rhs=" << rhs.t();
- }
- }
- template<typename T>
- static void testEigenSymmetric3x3()
- {
- /*const*/ T values_[] = {
- 2, -1, 0,
- -1, 2, -1,
- 0, -1, 2
- };
- Mat_<T> src(3, 3, values_);
- /*const*/ T expected_eigenvalues_[] = { 3.414213562373095f, 2, 0.585786437626905f };
- Mat_<T> expected_eigenvalues(3, 1, expected_eigenvalues_);
- testEigen(src, expected_eigenvalues);
- testEigen(src, expected_eigenvalues, true);
- }
- TEST(Core_EigenSymmetric, float3x3) { testEigenSymmetric3x3<float>(); }
- TEST(Core_EigenSymmetric, double3x3) { testEigenSymmetric3x3<double>(); }
- template<typename T>
- static void testEigenSymmetric5x5()
- {
- /*const*/ T values_[5*5] = {
- 5, -1, 0, 2, 1,
- -1, 4, -1, 0, 0,
- 0, -1, 3, 1, -1,
- 2, 0, 1, 4, 0,
- 1, 0, -1, 0, 1
- };
- Mat_<T> src(5, 5, values_);
- /*const*/ T expected_eigenvalues_[] = { 7.028919644935684f, 4.406130784616501f, 3.73626552682258f, 1.438067799899037f, 0.390616243726198f };
- Mat_<T> expected_eigenvalues(5, 1, expected_eigenvalues_);
- testEigen(src, expected_eigenvalues);
- testEigen(src, expected_eigenvalues, true);
- }
- TEST(Core_EigenSymmetric, float5x5) { testEigenSymmetric5x5<float>(); }
- TEST(Core_EigenSymmetric, double5x5) { testEigenSymmetric5x5<double>(); }
- template<typename T>
- static void testEigen2x2()
- {
- /*const*/ T values_[] = { 4, 1, 6, 3 };
- Mat_<T> src(2, 2, values_);
- /*const*/ T expected_eigenvalues_[] = { 6, 1 };
- Mat_<T> expected_eigenvalues(2, 1, expected_eigenvalues_);
- testEigen(src, expected_eigenvalues);
- }
- TEST(Core_EigenNonSymmetric, float2x2) { testEigen2x2<float>(); }
- TEST(Core_EigenNonSymmetric, double2x2) { testEigen2x2<double>(); }
- template<typename T>
- static void testEigen3x3()
- {
- /*const*/ T values_[3*3] = {
- 3,1,0,
- 0,3,1,
- 0,0,3
- };
- Mat_<T> src(3, 3, values_);
- /*const*/ T expected_eigenvalues_[] = { 3, 3, 3 };
- Mat_<T> expected_eigenvalues(3, 1, expected_eigenvalues_);
- testEigen(src, expected_eigenvalues);
- }
- TEST(Core_EigenNonSymmetric, float3x3) { testEigen3x3<float>(); }
- TEST(Core_EigenNonSymmetric, double3x3) { testEigen3x3<double>(); }
- typedef testing::TestWithParam<int> Core_EigenZero;
- TEST_P(Core_EigenZero, double)
- {
- int N = GetParam();
- Mat_<double> srcZero = Mat_<double>::zeros(N, N);
- Mat_<double> expected_eigenvalueZero = Mat_<double>::zeros(N, 1); // 1D Mat
- testEigen(srcZero, expected_eigenvalueZero);
- testEigen(srcZero, expected_eigenvalueZero, true);
- }
- INSTANTIATE_TEST_CASE_P(/**/, Core_EigenZero, testing::Values(2, 3, 5));
- TEST(Core_EigenNonSymmetric, convergence)
- {
- Matx33d m(
- 0, -1, 0,
- 1, 0, 1,
- 0, -1, 0);
- Mat eigenvalues, eigenvectors;
- // eigen values are complex, algorithm doesn't converge
- try
- {
- cv::eigenNonSymmetric(m, eigenvalues, eigenvectors);
- std::cout << Mat(eigenvalues.t()) << std::endl;
- }
- catch (const cv::Exception& e)
- {
- EXPECT_EQ(Error::StsNoConv, e.code) << e.what();
- }
- catch (...)
- {
- FAIL() << "Unknown exception has been raised";
- }
- }
- }} // namespace
|