12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085 |
- <?xml version="1.0"?>
- <!--
- 19x23 lowerbody detector (see the detailed description below).
- //////////////////////////////////////////////////////////////////////////
- | Contributors License Agreement
- | IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- | By downloading, copying, installing or using the software you agree
- | to this license.
- | If you do not agree to this license, do not download, install,
- | copy or use the software.
- |
- | Copyright (c) 2004, Hannes Kruppa and Bernt Schiele (ETH Zurich, Switzerland).
- | All rights reserved.
- |
- | Redistribution and use in source and binary forms, with or without
- | modification, are permitted provided that the following conditions are
- | met:
- |
- | * Redistributions of source code must retain the above copyright
- | notice, this list of conditions and the following disclaimer.
- | * Redistributions in binary form must reproduce the above
- | copyright notice, this list of conditions and the following
- | disclaimer in the documentation and/or other materials provided
- | with the distribution.
- | * The name of Contributor may not used to endorse or promote products
- | derived from this software without specific prior written permission.
- |
- | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
- | CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Back to
- | Top
- //////////////////////////////////////////////////////////////////////////
- "Haar"-based Detectors For Pedestrian Detection
- ===============================================
- by Hannes Kruppa and Bernt Schiele, ETH Zurich, Switzerland
- This archive provides the following three detectors:
- - upper body detector (most fun, useful in many scenarios!)
- - lower body detector
- - full body detector
- These detectors have been successfully applied to pedestrian detection
- in still images. They can be directly passed as parameters to the
- program HaarFaceDetect.
- NOTE: These detectors deal with frontal and backside views but not
- with side views (also see "Known limitations" below).
- RESEARCHERS:
- If you are using any of the detectors or involved ideas please cite
- this paper (available at www.vision.ethz.ch/publications/):
- @InProceedings{Kruppa03-bmvc,
- author = "Hannes Kruppa, Modesto Castrillon-Santana and Bernt Schiele",
- title = "Fast and Robust Face Finding via Local Context."
- booktitle = "Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance"
- year = "2003",
- month = "October"
- }
- COMMERCIAL:
- If you have any commercial interest in this work please contact
- hkruppa@inf.ethz.ch
- ADDITIONAL INFORMATION
- ======================
- Check out the demo movie, e.g. using mplayer or any (Windows/Linux-) player
- that can play back .mpg movies.
- Under Linux that's:
- > ffplay demo.mpg
- or:
- > mplayer demo.mpg
- The movie shows a person walking towards the camera in a realistic
- indoor setting. Using ffplay or mplayer you can pause and continue the
- movie by pressing the space bar.
- Detections coming from the different detectors are visualized using
- different line styles:
- upper body : dotted line
- lower body : dashed line
- full body : solid line
- You will notice that successful detections containing the target do
- not sit tightly on the body but also include some of the background
- left and right. This is not a bug but accurately reflects the
- employed training data which also includes portions of the background
- to ensure proper silhouette representation. If you want to get a
- feeling for the training data check out the CBCL data set:
- http://www.ai.mit.edu/projects/cbcl/software-datasets/PedestrianData.html
- There is also a small number of false alarms in this sequence.
- NOTE: This is per frame detection, not tracking (which is also one of
- the reasons why it is not mislead by the person's shadow on the back
- wall).
- On an Intel Xeon 1.7GHz machine the detectors operate at something
- between 6Hz to 14 Hz (on 352 x 288 frames per second) depending on the
- detector. The detectors work as well on much lower image resolutions
- which is always an interesting possibility for speed-ups or
- "coarse-to-fine" search strategies.
- Additional information e.g. on training parameters, detector
- combination, detecting other types of objects (e.g. cars) etc. is
- available in my PhD thesis report (available end of June). Check out
- www.vision.ethz.ch/kruppa/
- KNOWN LIMITATIONS
- =================
- 1) The detectors only support frontal and back views but not sideviews.
- Sideviews are trickier and it makes a lot of sense to include additional
- modalities for their detection, e.g. motion information. I recommend
- Viola and Jones' ICCV 2003 paper if this further interests you.
- 2) Don't expect these detectors to be as accurate as a frontal face detector.
- A frontal face as a pattern is pretty distinct with respect to other
- patterns occurring in the world (i.e. image "background"). This is not so
- for upper, lower and especially full bodies, because they have to rely
- on fragile silhouette information rather than internal (facial) features.
- Still, we found especially the upper body detector to perform amazingly well.
- In contrast to a face detector these detectors will also work at very low
- image resolutions
- Acknowledgements
- ================
- Thanks to Martin Spengler, ETH Zurich, for providing the demo movie.
- -->
- <opencv_storage>
- <haarcascade_lowerbody type_id="opencv-haar-classifier">
- <size>19 23</size>
- <stages>
- <_>
- <!-- stage 0 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 12 16 -1.</_>
- <_>7 4 4 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0168698690831661</threshold>
- <left_val>0.5465741753578186</left_val>
- <right_val>-0.6367803812026978</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 2 20 -1.</_>
- <_>11 10 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5349899660795927e-003</threshold>
- <left_val>-0.3760549128055573</left_val>
- <right_val>0.3237810134887695</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 4 22 -1.</_>
- <_>4 12 4 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0247094593942165</threshold>
- <left_val>-0.6797912716865540</left_val>
- <right_val>0.2050105929374695</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 7 12 -1.</_>
- <_>9 14 7 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0824368596076965</threshold>
- <left_val>0.2058863937854767</left_val>
- <right_val>-0.8493843078613281</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 6 10 -1.</_>
- <_>6 0 3 5 2.</_>
- <_>9 5 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2128931535407901e-004</threshold>
- <left_val>0.3189192116260529</left_val>
- <right_val>-0.4646945893764496</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 18 5 -1.</_>
- <_>1 18 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0230169594287872</threshold>
- <left_val>0.1867029964923859</left_val>
- <right_val>-0.7033089995384216</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 20 10 3 -1.</_>
- <_>9 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6386149264872074e-003</threshold>
- <left_val>0.1637049019336700</left_val>
- <right_val>-0.8460472226142883</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 17 10 6 -1.</_>
- <_>6 20 10 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.6682120561599731e-004</threshold>
- <left_val>-0.3985269069671631</left_val>
- <right_val>0.2311332970857620</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 4 20 -1.</_>
- <_>0 10 4 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1173167973756790</threshold>
- <left_val>0.1044503971934319</left_val>
- <right_val>-0.8851094245910645</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 16 14 -1.</_>
- <_>3 7 16 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0154212303459644</threshold>
- <left_val>-0.2785950899124146</left_val>
- <right_val>0.2892192006111145</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 4 13 -1.</_>
- <_>7 1 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0340189486742020</threshold>
- <left_val>-0.1428766995668411</left_val>
- <right_val>0.7780153155326843</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 18 12 -1.</_>
- <_>10 8 9 6 2.</_>
- <_>1 14 9 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0346388705074787</threshold>
- <left_val>0.1864407956600189</left_val>
- <right_val>-0.6032484173774719</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 15 21 -1.</_>
- <_>7 0 5 21 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3750365972518921</threshold>
- <left_val>0.9278184175491333</left_val>
- <right_val>-0.1542160063982010</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 18 18 -1.</_>
- <_>10 5 9 9 2.</_>
- <_>1 14 9 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0560119710862637</threshold>
- <left_val>-0.5859106779098511</left_val>
- <right_val>0.1954751014709473</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 19 15 3 -1.</_>
- <_>7 19 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4878909569233656e-003</threshold>
- <left_val>0.2813934981822968</left_val>
- <right_val>-0.4185301065444946</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 20 12 3 -1.</_>
- <_>7 20 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0144956996664405</threshold>
- <left_val>-0.7227396965026856</left_val>
- <right_val>0.0942884609103203</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 21 14 2 -1.</_>
- <_>8 21 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6178281083703041e-003</threshold>
- <left_val>-0.5955196022987366</left_val>
- <right_val>0.1520265042781830</right_val></_></_></trees>
- <stage_threshold>-1.4308550357818604</stage_threshold>
- <parent>-1</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 1 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 18 6 -1.</_>
- <_>6 16 6 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1839120201766491e-003</threshold>
- <left_val>0.4002513885498047</left_val>
- <right_val>-0.6847316026687622</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 4 20 -1.</_>
- <_>8 13 4 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5989920143038034e-003</threshold>
- <left_val>-0.5189595222473145</left_val>
- <right_val>0.3010114133358002</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 19 18 3 -1.</_>
- <_>9 19 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0188046302646399</threshold>
- <left_val>0.1555491983890533</left_val>
- <right_val>-0.8047717213630676</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 21 14 2 -1.</_>
- <_>5 21 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2497140131890774e-003</threshold>
- <left_val>0.1378080993890762</left_val>
- <right_val>-0.6076750755310059</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 9 5 -1.</_>
- <_>5 0 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4204799663275480e-003</threshold>
- <left_val>0.3231942951679230</left_val>
- <right_val>-0.4340746104717255</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 20 15 3 -1.</_>
- <_>8 20 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0251743495464325</threshold>
- <left_val>-0.7078087925910950</left_val>
- <right_val>0.0931063294410706</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 6 14 -1.</_>
- <_>5 9 2 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2285219058394432e-003</threshold>
- <left_val>-0.3251047134399414</left_val>
- <right_val>0.3357169926166534</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 3 3 18 -1.</_>
- <_>12 12 3 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0949934124946594</threshold>
- <left_val>0.0824390873312950</left_val>
- <right_val>-0.8754953742027283</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 14 4 9 -1.</_>
- <_>3 14 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.5919090993702412e-003</threshold>
- <left_val>-0.7380419969558716</left_val>
- <right_val>0.1385374963283539</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 11 8 -1.</_>
- <_>7 17 11 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1146620381623507e-003</threshold>
- <left_val>0.1791726946830750</left_val>
- <right_val>-0.2795585989952087</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 6 10 -1.</_>
- <_>0 7 3 5 2.</_>
- <_>3 12 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0133490199223161</threshold>
- <left_val>0.1305782943964005</left_val>
- <right_val>-0.6980267167091370</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 13 -1.</_>
- <_>10 6 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0351814515888691</threshold>
- <left_val>0.4653536081314087</left_val>
- <right_val>-0.1069877967238426</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 4 13 -1.</_>
- <_>7 6 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0318745896220207</threshold>
- <left_val>-0.1356538981199265</left_val>
- <right_val>0.7904788851737976</right_val></_></_></trees>
- <stage_threshold>-1.1907930374145508</stage_threshold>
- <parent>0</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 2 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 6 8 -1.</_>
- <_>8 2 6 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0106474300846457</threshold>
- <left_val>0.3807902932167053</left_val>
- <right_val>-0.5867233872413635</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 19 12 -1.</_>
- <_>0 17 19 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0732144936919212</threshold>
- <left_val>-0.7955095171928406</left_val>
- <right_val>0.1722325980663300</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 6 5 -1.</_>
- <_>3 18 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0464427806437016e-003</threshold>
- <left_val>0.1653216034173966</left_val>
- <right_val>-0.6937664747238159</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 17 9 6 -1.</_>
- <_>12 17 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3225022060796618e-004</threshold>
- <left_val>-0.3324716091156006</left_val>
- <right_val>0.2366997003555298</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 20 15 3 -1.</_>
- <_>5 20 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0109900804236531</threshold>
- <left_val>-0.6913688778877258</left_val>
- <right_val>0.2105827033519745</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 19 8 4 -1.</_>
- <_>9 19 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5282750246115029e-004</threshold>
- <left_val>0.2030584961175919</left_val>
- <right_val>-0.4655165970325470</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 9 6 -1.</_>
- <_>3 17 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4822261184453964e-004</threshold>
- <left_val>-0.4212292134761810</left_val>
- <right_val>0.2733530998229981</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 17 5 6 -1.</_>
- <_>14 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.4205856546759605e-003</threshold>
- <left_val>-0.4374446868896484</left_val>
- <right_val>0.0588318482041359</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 15 14 -1.</_>
- <_>7 2 5 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3699279129505158</threshold>
- <left_val>0.9107081890106201</left_val>
- <right_val>-0.0872075408697128</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 17 5 6 -1.</_>
- <_>14 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1259930953383446e-003</threshold>
- <left_val>0.1188673004508019</left_val>
- <right_val>-0.1852017045021057</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 5 6 -1.</_>
- <_>0 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0144090093672276e-003</threshold>
- <left_val>-0.6305705904960632</left_val>
- <right_val>0.1457718014717102</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 13 8 -1.</_>
- <_>3 4 13 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.5623031482100487e-003</threshold>
- <left_val>-0.2936938107013702</left_val>
- <right_val>0.3241134881973267</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 21 14 2 -1.</_>
- <_>7 21 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0139668500050902</threshold>
- <left_val>-0.8065037131309509</left_val>
- <right_val>0.1126779019832611</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 4 15 -1.</_>
- <_>9 4 2 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0417344681918621</threshold>
- <left_val>0.7749533057212830</left_val>
- <right_val>-0.0788663029670715</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 8 5 -1.</_>
- <_>5 18 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7996799326501787e-004</threshold>
- <left_val>0.2778331041336060</left_val>
- <right_val>-0.3519608974456787</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 4 15 -1.</_>
- <_>9 4 2 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0195885691791773</threshold>
- <left_val>-0.0657596364617348</left_val>
- <right_val>0.5241413712501526</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 4 15 -1.</_>
- <_>8 4 2 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.2163113877177238e-003</threshold>
- <left_val>-0.1552547961473465</left_val>
- <right_val>0.5483539104461670</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 11 8 8 -1.</_>
- <_>15 11 4 4 2.</_>
- <_>11 15 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0214585699141026</threshold>
- <left_val>-0.5225530862808228</left_val>
- <right_val>0.0822082683444023</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 6 7 -1.</_>
- <_>6 13 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6805770359933376e-003</threshold>
- <left_val>-0.2443412989377976</left_val>
- <right_val>0.3612248897552490</right_val></_></_></trees>
- <stage_threshold>-1.3129220008850098</stage_threshold>
- <parent>1</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 3 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 8 13 -1.</_>
- <_>7 1 4 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.3544738590717316e-003</threshold>
- <left_val>0.2817318141460419</left_val>
- <right_val>-0.4972813129425049</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 21 14 2 -1.</_>
- <_>5 21 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5724289268255234e-003</threshold>
- <left_val>-0.6550530195236206</left_val>
- <right_val>0.1940605938434601</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 21 18 2 -1.</_>
- <_>9 21 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7714767754077911e-003</threshold>
- <left_val>-0.6223093867301941</left_val>
- <right_val>0.2762239873409271</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 18 8 5 -1.</_>
- <_>7 18 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0229958891868591</threshold>
- <left_val>0.0197985693812370</left_val>
- <right_val>-0.7832453846931458</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 17 8 6 -1.</_>
- <_>8 17 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1443760013207793e-003</threshold>
- <left_val>0.2810871899127960</left_val>
- <right_val>-0.4821484982967377</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 7 10 -1.</_>
- <_>10 2 7 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.2591750919818878</threshold>
- <left_val>-0.6821495890617371</left_val>
- <right_val>-3.3729869755916297e-004</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 2 14 -1.</_>
- <_>3 9 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0133039690554142e-003</threshold>
- <left_val>-0.6570441126823425</left_val>
- <right_val>0.1369359940290451</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 7 2 16 -1.</_>
- <_>15 7 1 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4540671408176422e-003</threshold>
- <left_val>0.0869318172335625</left_val>
- <right_val>-0.7056797146797180</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 4 15 -1.</_>
- <_>3 8 2 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6230311058461666e-003</threshold>
- <left_val>0.1663428992033005</left_val>
- <right_val>-0.5177295804023743</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 0 3 14 -1.</_>
- <_>14 0 3 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0125616695731878</threshold>
- <left_val>0.0902904719114304</left_val>
- <right_val>-0.1685097068548203</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 8 9 -1.</_>
- <_>9 6 4 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0428907386958599</threshold>
- <left_val>0.1297781020402908</left_val>
- <right_val>-0.5821806192398071</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 15 11 8 -1.</_>
- <_>8 17 11 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3341030571609735e-003</threshold>
- <left_val>0.1369432955980301</left_val>
- <right_val>-0.1943780928850174</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 4 10 -1.</_>
- <_>7 7 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0412474609911442</threshold>
- <left_val>0.6854385137557983</left_val>
- <right_val>-0.1303945034742355</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 15 9 8 -1.</_>
- <_>10 17 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.1503392904996872e-003</threshold>
- <left_val>-0.1189543008804321</left_val>
- <right_val>0.0675766989588737</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 9 8 -1.</_>
- <_>0 17 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7151240026578307e-003</threshold>
- <left_val>0.2647553980350494</left_val>
- <right_val>-0.3048745095729828</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 17 18 -1.</_>
- <_>2 10 17 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2084320038557053</threshold>
- <left_val>0.1240148991346359</left_val>
- <right_val>-0.4701411128044128</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 16 2 -1.</_>
- <_>2 0 8 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0723939687013626</threshold>
- <left_val>0.0969243794679642</left_val>
- <right_val>-0.7734774947166443</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 9 5 -1.</_>
- <_>11 0 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5335980569943786e-003</threshold>
- <left_val>0.1799121946096420</left_val>
- <right_val>-0.2578833103179932</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 6 10 -1.</_>
- <_>6 0 3 5 2.</_>
- <_>9 5 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8640500754117966e-003</threshold>
- <left_val>0.1139298006892204</left_val>
- <right_val>-0.5517386794090271</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 7 -1.</_>
- <_>10 6 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6523050144314766e-003</threshold>
- <left_val>0.1515468955039978</left_val>
- <right_val>-0.2290167957544327</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 15 11 -1.</_>
- <_>7 4 5 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0753487572073936</threshold>
- <left_val>-0.1463088989257813</left_val>
- <right_val>0.6810588240623474</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 15 4 8 -1.</_>
- <_>15 15 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2630068063735962e-003</threshold>
- <left_val>-0.7278360128402710</left_val>
- <right_val>0.1028101965785027</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 4 8 -1.</_>
- <_>2 15 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5124741047620773e-003</threshold>
- <left_val>-0.6305934786796570</left_val>
- <right_val>0.0932577997446060</right_val></_></_></trees>
- <stage_threshold>-1.3777279853820801</stage_threshold>
- <parent>2</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 4 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 4 11 -1.</_>
- <_>7 6 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.3849105760455132e-003</threshold>
- <left_val>0.5250058174133301</left_val>
- <right_val>-0.4323106110095978</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 17 16 4 -1.</_>
- <_>7 17 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3772470410913229e-003</threshold>
- <left_val>0.2069848030805588</left_val>
- <right_val>-0.4271875917911530</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 10 8 -1.</_>
- <_>9 3 5 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0263201091438532</threshold>
- <left_val>0.1582517027854919</left_val>
- <right_val>-0.6550952196121216</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 7 10 -1.</_>
- <_>12 6 7 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0454887598752975</threshold>
- <left_val>-0.4951010942459106</left_val>
- <right_val>0.1799882054328919</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 6 5 -1.</_>
- <_>5 0 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7006201930344105e-003</threshold>
- <left_val>0.3397116065025330</left_val>
- <right_val>-0.3691770136356354</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 18 14 3 -1.</_>
- <_>4 19 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3270860072225332e-003</threshold>
- <left_val>0.3090786039829254</left_val>
- <right_val>-0.1977175027132034</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 20 14 3 -1.</_>
- <_>9 20 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.3802614137530327e-003</threshold>
- <left_val>0.0944884493947029</left_val>
- <right_val>-0.7319809794425964</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 21 14 2 -1.</_>
- <_>4 21 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3565612286329269e-003</threshold>
- <left_val>0.1152020022273064</left_val>
- <right_val>-0.5400810241699219</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 3 14 -1.</_>
- <_>9 8 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.1178937107324600e-003</threshold>
- <left_val>-0.1595630943775177</left_val>
- <right_val>0.5377786755561829</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 9 3 14 -1.</_>
- <_>9 9 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.7829083204269409e-003</threshold>
- <left_val>0.5663471817970276</left_val>
- <right_val>-0.1327937990427017</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 9 16 -1.</_>
- <_>5 11 9 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0219448506832123</threshold>
- <left_val>0.1590128988027573</left_val>
- <right_val>-0.5175182223320007</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 13 6 8 -1.</_>
- <_>11 17 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0495100989937782</threshold>
- <left_val>0.0110676400363445</left_val>
- <right_val>-0.4997246861457825</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 17 7 6 -1.</_>
- <_>4 19 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1175360307097435e-003</threshold>
- <left_val>0.2649075984954834</left_val>
- <right_val>-0.2456562966108322</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 13 16 8 -1.</_>
- <_>10 13 8 4 2.</_>
- <_>2 17 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0103794699534774</threshold>
- <left_val>0.1262409985065460</left_val>
- <right_val>-0.4087724089622498</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 18 15 3 -1.</_>
- <_>2 19 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4977258872240782e-003</threshold>
- <left_val>-0.1972302049398422</left_val>
- <right_val>0.3886674940586090</right_val></_></_></trees>
- <stage_threshold>-1.0618749856948853</stage_threshold>
- <parent>3</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 5 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 13 15 3 -1.</_>
- <_>7 13 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1489548534154892e-003</threshold>
- <left_val>0.4018748104572296</left_val>
- <right_val>-0.5239737033843994</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 11 16 -1.</_>
- <_>8 4 11 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0504645407199860</threshold>
- <left_val>0.1304967999458313</left_val>
- <right_val>-0.5865144133567810</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 19 18 -1.</_>
- <_>0 6 19 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0559062696993351</threshold>
- <left_val>-0.5122954249382019</left_val>
- <right_val>0.2439288944005966</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 11 16 -1.</_>
- <_>8 4 11 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1428150981664658</threshold>
- <left_val>-0.0151801602914929</left_val>
- <right_val>-0.6959391832351685</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 4 20 -1.</_>
- <_>0 6 4 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0411627702414989</threshold>
- <left_val>0.1367373019456863</left_val>
- <right_val>-0.6415883898735046</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 15 4 -1.</_>
- <_>8 6 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0164687503129244</threshold>
- <left_val>0.2633903920650482</left_val>
- <right_val>-0.2208368033170700</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 18 6 -1.</_>
- <_>0 9 9 3 2.</_>
- <_>9 12 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0247631408274174</threshold>
- <left_val>0.1089773997664452</left_val>
- <right_val>-0.6521390080451965</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 3 14 -1.</_>
- <_>9 5 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3008858337998390e-003</threshold>
- <left_val>-0.1829963028430939</left_val>
- <right_val>0.4361422955989838</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 6 8 -1.</_>
- <_>3 0 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4035290591418743e-003</threshold>
- <left_val>-0.2436358034610748</left_val>
- <right_val>0.2822436988353729</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 18 6 -1.</_>
- <_>10 6 9 3 2.</_>
- <_>1 9 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0222106203436852</threshold>
- <left_val>-0.5464575886726379</left_val>
- <right_val>0.1354296952486038</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 4 15 -1.</_>
- <_>8 7 2 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0269680190831423</threshold>
- <left_val>0.6530094742774963</left_val>
- <right_val>-0.1429730951786041</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 8 10 -1.</_>
- <_>11 10 8 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0349279083311558</threshold>
- <left_val>-0.5234662890434265</left_val>
- <right_val>0.1008457019925118</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 8 10 -1.</_>
- <_>0 10 8 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0362635813653469</threshold>
- <left_val>0.1511014997959137</left_val>
- <right_val>-0.5418584942817688</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 20 15 3 -1.</_>
- <_>8 20 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0385267883539200</threshold>
- <left_val>-0.8694227933883667</left_val>
- <right_val>0.0371767692267895</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 9 5 -1.</_>
- <_>5 16 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5399168953299522e-003</threshold>
- <left_val>-0.2612588107585907</left_val>
- <right_val>0.2727844119071960</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 11 6 11 -1.</_>
- <_>13 11 3 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0129311503842473</threshold>
- <left_val>-0.4950157999992371</left_val>
- <right_val>0.0913835167884827</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 4 11 -1.</_>
- <_>7 8 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0119813503697515</threshold>
- <left_val>-0.1205961033701897</left_val>
- <right_val>0.6384863853454590</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 12 5 -1.</_>
- <_>8 7 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0743204131722450</threshold>
- <left_val>0.4659177958965302</left_val>
- <right_val>-0.0402656681835651</right_val></_></_></trees>
- <stage_threshold>-0.9546145796775818</stage_threshold>
- <parent>4</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 6 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 15 3 -1.</_>
- <_>7 11 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.9070039317011833e-003</threshold>
- <left_val>0.4319767951965332</left_val>
- <right_val>-0.5171784758567810</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 18 3 -1.</_>
- <_>7 1 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.1628039479255676e-003</threshold>
- <left_val>0.2711654007434845</left_val>
- <right_val>-0.3280341029167175</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 14 4 -1.</_>
- <_>5 1 7 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0188525095582008</threshold>
- <left_val>0.1554879993200302</left_val>
- <right_val>-0.5524392724037170</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 18 10 -1.</_>
- <_>10 9 9 5 2.</_>
- <_>1 14 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0340793915092945</threshold>
- <left_val>0.1527225971221924</left_val>
- <right_val>-0.6531801223754883</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 3 14 -1.</_>
- <_>8 9 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2038250938057899e-003</threshold>
- <left_val>0.3472546041011810</left_val>
- <right_val>-0.2773422896862030</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 4 14 -1.</_>
- <_>9 7 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1410689223557711e-003</threshold>
- <left_val>-0.0688882768154144</left_val>
- <right_val>0.2407948970794678</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 19 16 -1.</_>
- <_>0 9 19 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1462045013904572</threshold>
- <left_val>0.1576687991619110</left_val>
- <right_val>-0.5451586246490479</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 7 3 14 -1.</_>
- <_>10 7 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2386798672378063e-003</threshold>
- <left_val>0.3289957940578461</left_val>
- <right_val>-0.1697064042091370</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 14 6 -1.</_>
- <_>2 11 7 3 2.</_>
- <_>9 14 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7623138204216957e-003</threshold>
- <left_val>0.1635251045227051</left_val>
- <right_val>-0.5187932848930359</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 7 3 14 -1.</_>
- <_>10 7 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7800080608576536e-003</threshold>
- <left_val>-0.1846437007188797</left_val>
- <right_val>0.4866007864475250</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 3 14 -1.</_>
- <_>8 7 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2303969599306583e-003</threshold>
- <left_val>-0.1705719977617264</left_val>
- <right_val>0.4774479866027832</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 17 5 6 -1.</_>
- <_>7 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4544890038669109e-003</threshold>
- <left_val>-0.3355064988136292</left_val>
- <right_val>0.2536926865577698</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 9 15 -1.</_>
- <_>5 11 3 5 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0217074193060398</threshold>
- <left_val>-0.4832189083099365</left_val>
- <right_val>0.1607502996921539</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 6 10 -1.</_>
- <_>11 0 3 5 2.</_>
- <_>8 5 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0174219701439142</threshold>
- <left_val>0.0798779129981995</left_val>
- <right_val>-0.7513725757598877</right_val></_></_></trees>
- <stage_threshold>-1.1777880191802979</stage_threshold>
- <parent>5</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 7 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 6 21 -1.</_>
- <_>5 9 2 7 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8802073150873184e-003</threshold>
- <left_val>-0.4468241035938263</left_val>
- <right_val>0.2606253027915955</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 19 10 4 -1.</_>
- <_>9 19 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0198058811947703e-004</threshold>
- <left_val>0.1525840014219284</left_val>
- <right_val>-0.3520650863647461</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 4 8 -1.</_>
- <_>4 8 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7998501472175121e-003</threshold>
- <left_val>0.1225932016968727</left_val>
- <right_val>-0.6842743754386902</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 2 22 -1.</_>
- <_>11 12 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7802670374512672e-003</threshold>
- <left_val>-0.3368163108825684</left_val>
- <right_val>0.1851855963468552</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 20 15 3 -1.</_>
- <_>5 20 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0115538202226162</threshold>
- <left_val>-0.6987134814262390</left_val>
- <right_val>0.1307960003614426</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 19 8 4 -1.</_>
- <_>10 19 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0265632905066013</threshold>
- <left_val>-0.7027788162231445</left_val>
- <right_val>0.0177913308143616</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 19 8 4 -1.</_>
- <_>5 19 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5158381322398782e-004</threshold>
- <left_val>0.2477948069572449</left_val>
- <right_val>-0.3978793025016785</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 6 7 -1.</_>
- <_>11 0 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0357483103871346</threshold>
- <left_val>-0.0380434393882751</left_val>
- <right_val>0.4797626137733460</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 6 7 -1.</_>
- <_>6 0 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9973930902779102e-003</threshold>
- <left_val>0.2577486932277679</left_val>
- <right_val>-0.3199009895324707</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 2 3 10 -1.</_>
- <_>13 2 3 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1100711002945900</threshold>
- <left_val>-0.4910286962985992</left_val>
- <right_val>0.0231046304106712</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 6 9 -1.</_>
- <_>9 4 3 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2225650027394295e-003</threshold>
- <left_val>0.2382529973983765</left_val>
- <right_val>-0.2841553092002869</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 2 10 -1.</_>
- <_>10 7 1 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.7874241396784782e-003</threshold>
- <left_val>-0.3895137012004852</left_val>
- <right_val>0.0557628907263279</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 15 9 -1.</_>
- <_>7 1 5 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0564158596098423</threshold>
- <left_val>-0.0935217216610909</left_val>
- <right_val>0.7256116271018982</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 6 7 -1.</_>
- <_>10 5 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5978010855615139e-003</threshold>
- <left_val>0.1945219039916992</left_val>
- <right_val>-0.1965128034353256</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 6 7 -1.</_>
- <_>7 5 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2716898284852505e-003</threshold>
- <left_val>0.3416987061500549</left_val>
- <right_val>-0.2285155951976776</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 2 10 -1.</_>
- <_>10 7 1 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.1941758506000042e-003</threshold>
- <left_val>0.0721488669514656</left_val>
- <right_val>-0.4531350135803223</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 7 10 2 -1.</_>
- <_>9 7 10 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.1034761816263199e-003</threshold>
- <left_val>-0.5133674740791321</left_val>
- <right_val>0.1332356929779053</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 16 4 7 -1.</_>
- <_>13 16 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4210970625281334e-003</threshold>
- <left_val>-0.4238378107547760</left_val>
- <right_val>0.0848528072237968</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 4 10 -1.</_>
- <_>8 9 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.1890922002494335e-003</threshold>
- <left_val>-0.1339855045080185</left_val>
- <right_val>0.4374955892562866</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 18 14 4 -1.</_>
- <_>12 18 7 2 2.</_>
- <_>5 20 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1827970156446099e-003</threshold>
- <left_val>-0.2973901033401489</left_val>
- <right_val>0.2212684005498886</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 12 3 -1.</_>
- <_>5 1 6 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0411965511739254</threshold>
- <left_val>-0.5073575973510742</left_val>
- <right_val>0.1324395984411240</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 2 22 -1.</_>
- <_>11 11 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9593890067189932e-003</threshold>
- <left_val>-0.1405262053012848</left_val>
- <right_val>0.0613608807325363</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 4 8 -1.</_>
- <_>5 15 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0226859748363495e-003</threshold>
- <left_val>-0.4749597012996674</left_val>
- <right_val>0.1206915006041527</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 2 14 -1.</_>
- <_>11 0 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0150978602468967</threshold>
- <left_val>0.2755539119243622</left_val>
- <right_val>-0.0537804514169693</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 2 14 -1.</_>
- <_>7 0 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0271909702569246</threshold>
- <left_val>0.7599545717239380</left_val>
- <right_val>-0.0747931897640228</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 2 20 -1.</_>
- <_>11 0 1 20 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0198938790708780</threshold>
- <left_val>-6.7238640040159225e-003</left_val>
- <right_val>0.7397276759147644</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 19 16 4 -1.</_>
- <_>5 19 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7208830043673515e-003</threshold>
- <left_val>0.0930711627006531</left_val>
- <right_val>-0.6578025221824646</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 2 20 -1.</_>
- <_>11 0 1 20 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1565990280359983e-003</threshold>
- <left_val>0.0946459174156189</left_val>
- <right_val>-0.1640790998935700</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 2 20 -1.</_>
- <_>7 0 1 20 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6069190353155136e-003</threshold>
- <left_val>-0.1387798041105270</left_val>
- <right_val>0.4734987020492554</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 2 22 -1.</_>
- <_>11 11 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0535861104726791</threshold>
- <left_val>-0.3734964132308960</left_val>
- <right_val>0.0257285591214895</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 14 4 -1.</_>
- <_>0 18 7 2 2.</_>
- <_>7 20 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5184599906206131e-003</threshold>
- <left_val>-0.2247871011495590</left_val>
- <right_val>0.2357459962368012</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 18 8 -1.</_>
- <_>10 1 9 4 2.</_>
- <_>1 5 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0370615608990192</threshold>
- <left_val>-0.6182711720466614</left_val>
- <right_val>0.0823480635881424</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 10 4 -1.</_>
- <_>9 8 10 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0263117998838425</threshold>
- <left_val>-0.6005765795707703</left_val>
- <right_val>0.0777688696980476</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 15 3 -1.</_>
- <_>8 7 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0879474282264709</threshold>
- <left_val>0.3884103894233704</left_val>
- <right_val>-0.0815455988049507</right_val></_></_></trees>
- <stage_threshold>-1.2834340333938599</stage_threshold>
- <parent>6</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 8 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 6 8 -1.</_>
- <_>8 1 6 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0290380306541920</threshold>
- <left_val>0.5063595771789551</left_val>
- <right_val>-0.4346269965171814</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 3 15 -1.</_>
- <_>9 3 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9044669829308987e-003</threshold>
- <left_val>-0.1900978982448578</left_val>
- <right_val>0.5184031724929810</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 14 9 6 -1.</_>
- <_>4 14 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9162769205868244e-003</threshold>
- <left_val>-0.3435131013393402</left_val>
- <right_val>0.2401631027460098</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 20 15 3 -1.</_>
- <_>8 20 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9670084416866302e-003</threshold>
- <left_val>-0.4266715049743652</left_val>
- <right_val>0.1231655031442642</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 14 3 -1.</_>
- <_>0 19 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4935540277510881e-003</threshold>
- <left_val>0.3608655035495758</left_val>
- <right_val>-0.1838146001100540</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 20 10 3 -1.</_>
- <_>5 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8912568017840385e-003</threshold>
- <left_val>-0.6474984884262085</left_val>
- <right_val>0.1085670962929726</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 10 6 -1.</_>
- <_>9 5 5 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.0970719419419765e-003</threshold>
- <left_val>0.2214383035898209</left_val>
- <right_val>-0.3150557875633240</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 15 14 -1.</_>
- <_>7 4 5 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0439564995467663</threshold>
- <left_val>-0.1078016981482506</left_val>
- <right_val>0.7189350128173828</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 6 7 -1.</_>
- <_>3 16 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9277370302006602e-003</threshold>
- <left_val>0.2024773955345154</left_val>
- <right_val>-0.4038108885288239</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 18 12 5 -1.</_>
- <_>11 18 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4976946711540222e-003</threshold>
- <left_val>0.0434940196573734</left_val>
- <right_val>-0.2990806102752686</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 15 3 -1.</_>
- <_>1 19 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5389279946684837e-003</threshold>
- <left_val>-0.1510948985815048</left_val>
- <right_val>0.5186424255371094</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 19 12 4 -1.</_>
- <_>8 19 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2064079530537128e-003</threshold>
- <left_val>0.2300644069910049</left_val>
- <right_val>-0.3319100141525269</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 3 12 -1.</_>
- <_>5 6 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9085410535335541e-003</threshold>
- <left_val>-0.3425331115722656</left_val>
- <right_val>0.2295188009738922</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 20 16 3 -1.</_>
- <_>3 20 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6973709464073181e-003</threshold>
- <left_val>0.1197668015956879</left_val>
- <right_val>-0.3532198965549469</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 15 8 -1.</_>
- <_>0 17 15 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1321459207683802e-003</threshold>
- <left_val>0.1820628941059113</left_val>
- <right_val>-0.2843410074710846</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 14 4 7 -1.</_>
- <_>12 14 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6955150533467531e-003</threshold>
- <left_val>0.0745938420295715</left_val>
- <right_val>-0.3089664876461029</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 15 3 -1.</_>
- <_>6 7 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0222679749131203e-003</threshold>
- <left_val>0.1804150044918060</left_val>
- <right_val>-0.2753166854381561</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 8 4 -1.</_>
- <_>10 0 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9143458753824234e-003</threshold>
- <left_val>0.2416609972715378</left_val>
- <right_val>-0.1450612992048264</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 18 4 -1.</_>
- <_>6 0 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0234749391674995</threshold>
- <left_val>-0.1235461980104446</left_val>
- <right_val>0.6562504172325134</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 20 10 3 -1.</_>
- <_>9 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6602950207889080e-003</threshold>
- <left_val>-0.3378525078296661</left_val>
- <right_val>0.1119455993175507</right_val></_></_></trees>
- <stage_threshold>-1.2891789674758911</stage_threshold>
- <parent>7</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 9 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 15 16 -1.</_>
- <_>7 4 5 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0696990936994553</threshold>
- <left_val>0.5078645944595337</left_val>
- <right_val>-0.4756268858909607</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 11 12 -1.</_>
- <_>4 6 11 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0216727796941996</threshold>
- <left_val>-0.2913419902324677</left_val>
- <right_val>0.3456152975559235</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 3 14 -1.</_>
- <_>8 9 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7600260004401207e-003</threshold>
- <left_val>0.3647744059562683</left_val>
- <right_val>-0.1955150961875916</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 21 14 2 -1.</_>
- <_>4 21 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6418169513344765e-003</threshold>
- <left_val>-0.5644559264183044</left_val>
- <right_val>0.0984866693615913</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 21 16 2 -1.</_>
- <_>8 21 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0006938874721527e-003</threshold>
- <left_val>-0.6364598274230957</left_val>
- <right_val>0.1437917053699493</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 4 14 -1.</_>
- <_>9 7 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0190734695643187</threshold>
- <left_val>-0.0342182889580727</left_val>
- <right_val>0.5504329204559326</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 16 12 -1.</_>
- <_>5 0 8 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0479933805763721</threshold>
- <left_val>-0.0858895108103752</left_val>
- <right_val>0.7679023146629334</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 17 16 5 -1.</_>
- <_>7 17 8 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6511209327727556e-003</threshold>
- <left_val>0.2018606960773468</left_val>
- <right_val>-0.2983267903327942</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 6 5 -1.</_>
- <_>3 13 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4485770370811224e-003</threshold>
- <left_val>-0.5129324793815613</left_val>
- <right_val>0.1369569003582001</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 12 6 6 -1.</_>
- <_>13 12 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3748829737305641e-003</threshold>
- <left_val>-0.4097512960433960</left_val>
- <right_val>0.1158144026994705</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 6 6 -1.</_>
- <_>3 12 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3586750030517578e-003</threshold>
- <left_val>0.1758242994546890</left_val>
- <right_val>-0.4543963074684143</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 4 14 -1.</_>
- <_>9 7 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0220748297870159</threshold>
- <left_val>0.4677563905715942</left_val>
- <right_val>-0.0463588312268257</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 4 20 -1.</_>
- <_>7 13 4 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0953248068690300e-003</threshold>
- <left_val>-0.3210053145885468</left_val>
- <right_val>0.2211935073137283</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 4 15 -1.</_>
- <_>9 6 2 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0119780674576759e-003</threshold>
- <left_val>0.0546017400920391</left_val>
- <right_val>-0.0978531017899513</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 4 15 -1.</_>
- <_>8 6 2 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9847508780658245e-003</threshold>
- <left_val>-0.1306326985359192</left_val>
- <right_val>0.5281507968902588</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 11 6 12 -1.</_>
- <_>16 11 3 6 2.</_>
- <_>13 17 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3485459648072720e-003</threshold>
- <left_val>-0.4211553931236267</left_val>
- <right_val>0.1192715987563133</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 6 12 -1.</_>
- <_>0 11 3 6 2.</_>
- <_>3 17 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5243330746889114e-003</threshold>
- <left_val>0.1210566014051437</left_val>
- <right_val>-0.4517711997032166</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 2 2 14 -1.</_>
- <_>11 2 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4893151130527258e-003</threshold>
- <left_val>0.1224960014224052</left_val>
- <right_val>-0.1120098009705544</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 2 14 -1.</_>
- <_>7 2 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3740491382777691e-003</threshold>
- <left_val>-0.1054932028055191</left_val>
- <right_val>0.6080614924430847</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 3 14 -1.</_>
- <_>12 5 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.3214988224208355e-003</threshold>
- <left_val>0.4761511087417603</left_val>
- <right_val>-0.0683909207582474</right_val></_></_></trees>
- <stage_threshold>-1.0202569961547852</stage_threshold>
- <parent>8</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 10 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 15 10 -1.</_>
- <_>7 4 5 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0422862395644188</threshold>
- <left_val>0.3674986064434052</left_val>
- <right_val>-0.4368098080158234</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 11 22 -1.</_>
- <_>4 11 11 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0388846993446350</threshold>
- <left_val>-0.3543888926506043</left_val>
- <right_val>0.2700921893119812</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 19 14 4 -1.</_>
- <_>0 19 7 2 2.</_>
- <_>7 21 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5983959892764688e-003</threshold>
- <left_val>-0.3220062851905823</left_val>
- <right_val>0.2540490031242371</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 4 7 -1.</_>
- <_>8 0 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9249849505722523e-003</threshold>
- <left_val>0.1647730022668839</left_val>
- <right_val>-0.4204387962818146</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 4 15 -1.</_>
- <_>8 0 2 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5850430354475975e-003</threshold>
- <left_val>-0.2550337016582489</left_val>
- <right_val>0.3155938982963562</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 21 14 2 -1.</_>
- <_>5 21 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4282119013369083e-003</threshold>
- <left_val>-0.4007428884506226</left_val>
- <right_val>0.1199335008859634</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 3 14 -1.</_>
- <_>8 9 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3538821153342724e-003</threshold>
- <left_val>0.3045963048934937</left_val>
- <right_val>-0.2231103032827377</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 9 2 14 -1.</_>
- <_>12 9 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.7664748057723045e-003</threshold>
- <left_val>0.3239651918411255</left_val>
- <right_val>-0.0929323807358742</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 2 14 -1.</_>
- <_>6 9 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.7180307814851403e-004</threshold>
- <left_val>-0.3245751857757568</left_val>
- <right_val>0.2180899977684021</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 20 15 3 -1.</_>
- <_>8 20 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8931829147040844e-003</threshold>
- <left_val>0.1253060996532440</left_val>
- <right_val>-0.4858247041702271</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 3 17 -1.</_>
- <_>6 0 1 17 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3115309197455645e-003</threshold>
- <left_val>0.4053410887718201</left_val>
- <right_val>-0.2243286967277527</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 20 12 3 -1.</_>
- <_>4 20 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8509041815996170e-003</threshold>
- <left_val>0.1215557008981705</left_val>
- <right_val>-0.6024348139762878</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 3 14 -1.</_>
- <_>6 2 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4662628099322319e-003</threshold>
- <left_val>-0.1697811931371689</left_val>
- <right_val>0.4075261950492859</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 15 18 -1.</_>
- <_>7 3 5 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0475593917071819</threshold>
- <left_val>-0.0817370414733887</left_val>
- <right_val>0.6986511945724487</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 4 7 -1.</_>
- <_>9 1 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1745019368827343e-003</threshold>
- <left_val>0.1741981059312820</left_val>
- <right_val>-0.3723703026771545</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 9 5 -1.</_>
- <_>11 0 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1520839333534241e-003</threshold>
- <left_val>0.2779935896396637</left_val>
- <right_val>-0.2531177997589111</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 4 7 -1.</_>
- <_>9 0 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8141111619770527e-003</threshold>
- <left_val>-0.5846602916717529</left_val>
- <right_val>0.1589429974555969</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 12 19 -1.</_>
- <_>8 3 6 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0219671502709389</threshold>
- <left_val>-0.1005275994539261</left_val>
- <right_val>0.4737487137317658</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 12 19 -1.</_>
- <_>5 3 6 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0128211043775082e-003</threshold>
- <left_val>0.1982019990682602</left_val>
- <right_val>-0.4217281937599182</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 8 2 14 -1.</_>
- <_>13 8 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5052049681544304e-003</threshold>
- <left_val>0.0170648097991943</left_val>
- <right_val>-0.4894779026508331</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 12 6 -1.</_>
- <_>1 18 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3302109437063336e-003</threshold>
- <left_val>0.1867033988237381</left_val>
- <right_val>-0.2943766117095947</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 8 2 14 -1.</_>
- <_>13 8 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.3667510878294706e-004</threshold>
- <left_val>-0.1478880047798157</left_val>
- <right_val>0.1012130007147789</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 2 14 -1.</_>
- <_>5 8 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4602739829570055e-003</threshold>
- <left_val>-0.4310795962810516</left_val>
- <right_val>0.1247986033558846</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 10 4 -1.</_>
- <_>9 0 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0341856293380260</threshold>
- <left_val>-0.0579336509108543</left_val>
- <right_val>0.5491775870323181</right_val></_></_></trees>
- <stage_threshold>-1.0336159467697144</stage_threshold>
- <parent>9</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 11 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 7 22 -1.</_>
- <_>6 12 7 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0306651107966900</threshold>
- <left_val>-0.3995327949523926</left_val>
- <right_val>0.3361752927303314</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 17 10 6 -1.</_>
- <_>12 17 5 3 2.</_>
- <_>7 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8893710114061832e-003</threshold>
- <left_val>-0.3874526917934418</left_val>
- <right_val>0.3056752085685730</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 6 5 -1.</_>
- <_>9 6 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1876110220327973e-003</threshold>
- <left_val>0.2215023934841156</left_val>
- <right_val>-0.2963232100009918</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 20 15 3 -1.</_>
- <_>8 20 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0173018351197243e-003</threshold>
- <left_val>0.1310252994298935</left_val>
- <right_val>-0.4880341887474060</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 15 8 -1.</_>
- <_>1 4 15 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4870697893202305e-003</threshold>
- <left_val>-0.3328250944614410</left_val>
- <right_val>0.1637607067823410</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 16 6 -1.</_>
- <_>6 0 8 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0325395204126835</threshold>
- <left_val>-0.0591645091772079</left_val>
- <right_val>0.6995337009429932</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 20 10 3 -1.</_>
- <_>7 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9682880789041519e-003</threshold>
- <left_val>-0.5628954172134399</left_val>
- <right_val>0.1175632029771805</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 19 10 3 -1.</_>
- <_>9 19 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1743397964164615e-004</threshold>
- <left_val>0.1540825068950653</left_val>
- <right_val>-0.2735001146793366</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 18 6 5 -1.</_>
- <_>6 18 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1031211256049573e-004</threshold>
- <left_val>0.1801355034112930</left_val>
- <right_val>-0.3757258951663971</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 6 9 -1.</_>
- <_>11 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0287750307470560</threshold>
- <left_val>-0.0342009291052818</left_val>
- <right_val>0.2764536142349243</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 6 9 -1.</_>
- <_>6 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1647972324863076e-004</threshold>
- <left_val>0.1795312017202377</left_val>
- <right_val>-0.3517831861972809</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 9 4 14 -1.</_>
- <_>12 9 2 7 2.</_>
- <_>10 16 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1818219684064388e-003</threshold>
- <left_val>-0.1453299969434738</left_val>
- <right_val>0.1490014046430588</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 4 7 -1.</_>
- <_>4 11 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4263889063149691e-003</threshold>
- <left_val>-0.4698129892349243</left_val>
- <right_val>0.0952622294425964</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 13 4 9 -1.</_>
- <_>12 13 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0254382099956274</threshold>
- <left_val>-0.0215314608067274</left_val>
- <right_val>0.3326692879199982</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 13 4 9 -1.</_>
- <_>5 13 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9593079863116145e-004</threshold>
- <left_val>0.1225496977567673</left_val>
- <right_val>-0.3567976951599121</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 13 10 6 -1.</_>
- <_>14 13 5 3 2.</_>
- <_>9 16 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6763447355479002e-004</threshold>
- <left_val>-0.1369418948888779</left_val>
- <right_val>0.1081883981823921</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 10 15 10 -1.</_>
- <_>7 10 5 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7481308728456497e-003</threshold>
- <left_val>-0.0908498689532280</left_val>
- <right_val>0.5011237859725952</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 9 4 14 -1.</_>
- <_>12 9 2 7 2.</_>
- <_>10 16 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7468831762671471e-003</threshold>
- <left_val>0.1162924990057945</left_val>
- <right_val>-0.0146517297253013</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 4 14 -1.</_>
- <_>5 9 2 7 2.</_>
- <_>7 16 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0644210055470467e-003</threshold>
- <left_val>-0.2273963987827301</left_val>
- <right_val>0.2778067886829376</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 16 4 7 -1.</_>
- <_>12 16 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1514191068708897e-003</threshold>
- <left_val>0.0357106812298298</left_val>
- <right_val>-0.3229677975177765</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 4 7 -1.</_>
- <_>5 16 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8335900753736496e-003</threshold>
- <left_val>-0.4839541912078857</left_val>
- <right_val>0.0926896035671234</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 17 7 6 -1.</_>
- <_>8 19 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6972409579902887e-003</threshold>
- <left_val>0.1635161042213440</left_val>
- <right_val>-0.1465732008218765</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 20 15 3 -1.</_>
- <_>5 20 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7644561640918255e-003</threshold>
- <left_val>0.0803429409861565</left_val>
- <right_val>-0.5027298927307129</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 15 6 8 -1.</_>
- <_>9 19 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.7455507339909673e-004</threshold>
- <left_val>-0.1953101009130478</left_val>
- <right_val>0.1239494979381561</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 10 10 -1.</_>
- <_>0 0 5 5 2.</_>
- <_>5 5 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0100083099678159</threshold>
- <left_val>-0.1503013968467712</left_val>
- <right_val>0.2799001932144165</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 10 3 -1.</_>
- <_>9 0 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2150952182710171e-003</threshold>
- <left_val>0.1688206046819687</left_val>
- <right_val>-0.1227921992540360</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 10 3 -1.</_>
- <_>5 0 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0113108502700925</threshold>
- <left_val>-0.0967869088053703</left_val>
- <right_val>0.6460161805152893</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 4 10 -1.</_>
- <_>10 4 2 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1004989966750145</threshold>
- <left_val>0.0206101592630148</left_val>
- <right_val>-0.9998857975006104</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 4 10 4 -1.</_>
- <_>9 4 10 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0132508603855968</threshold>
- <left_val>0.0931477174162865</left_val>
- <right_val>-0.4815680086612701</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 12 12 -1.</_>
- <_>10 8 4 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3908531069755554</threshold>
- <left_val>0.7105782032012940</left_val>
- <right_val>-0.0165488403290510</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 12 12 -1.</_>
- <_>5 8 4 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0243321992456913</threshold>
- <left_val>0.1452821046113968</left_val>
- <right_val>-0.2836672067642212</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 9 8 -1.</_>
- <_>5 8 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0354409459978342e-003</threshold>
- <left_val>-0.2001737058162689</left_val>
- <right_val>0.1879425048828125</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 15 21 -1.</_>
- <_>7 8 5 7 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.7174789905548096</threshold>
- <left_val>0.6663712859153748</left_val>
- <right_val>-0.0526562593877316</right_val></_></_></trees>
- <stage_threshold>-1.0450899600982666</stage_threshold>
- <parent>10</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 12 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 9 7 -1.</_>
- <_>4 16 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9620559178292751e-003</threshold>
- <left_val>-0.4107770025730133</left_val>
- <right_val>0.1889685988426209</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 12 18 -1.</_>
- <_>10 5 6 9 2.</_>
- <_>4 14 6 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0213313698768616</threshold>
- <left_val>0.0925990194082260</left_val>
- <right_val>-0.3966045081615448</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 20 15 3 -1.</_>
- <_>6 20 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0230374503880739</threshold>
- <left_val>-0.7229393720626831</left_val>
- <right_val>0.0964117199182510</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 16 13 -1.</_>
- <_>7 4 8 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0505212284624577</threshold>
- <left_val>0.1830200999975205</left_val>
- <right_val>-0.1948277950286865</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 10 8 -1.</_>
- <_>9 3 5 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0253309197723866</threshold>
- <left_val>0.1033475995063782</left_val>
- <right_val>-0.5801829099655151</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 19 8 4 -1.</_>
- <_>11 19 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3120220652781427e-004</threshold>
- <left_val>0.1337451934814453</left_val>
- <right_val>-0.2130098044872284</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 19 8 4 -1.</_>
- <_>4 19 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4295669643615838e-005</threshold>
- <left_val>0.1842049062252045</left_val>
- <right_val>-0.3030023872852325</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 9 5 -1.</_>
- <_>11 0 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8645719867199659e-003</threshold>
- <left_val>0.1737179011106491</left_val>
- <right_val>-0.2161282002925873</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 6 22 -1.</_>
- <_>6 0 3 11 2.</_>
- <_>9 11 3 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0103225102648139</threshold>
- <left_val>0.1107133030891419</left_val>
- <right_val>-0.4240294992923737</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 3 14 -1.</_>
- <_>9 7 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0138795096427202</threshold>
- <left_val>-0.1099329963326454</left_val>
- <right_val>0.5545889735221863</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 2 14 -1.</_>
- <_>6 8 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7010340234264731e-003</threshold>
- <left_val>-0.3140952885150909</left_val>
- <right_val>0.1547477990388870</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 11 3 10 -1.</_>
- <_>13 16 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7375848731026053e-004</threshold>
- <left_val>0.1467469036579132</left_val>
- <right_val>-0.1281761974096298</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 16 5 -1.</_>
- <_>5 0 8 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0399773791432381</threshold>
- <left_val>-0.0635403394699097</left_val>
- <right_val>0.6068580150604248</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 10 7 -1.</_>
- <_>9 0 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0126633998006582</threshold>
- <left_val>0.1098226010799408</left_val>
- <right_val>-0.1270720958709717</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 18 23 -1.</_>
- <_>9 0 9 23 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1018676012754440</threshold>
- <left_val>0.0885058715939522</left_val>
- <right_val>-0.5716562271118164</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 12 15 -1.</_>
- <_>9 13 4 5 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0695089586079121e-003</threshold>
- <left_val>0.0345948897302151</left_val>
- <right_val>-0.0996183082461357</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 6 7 -1.</_>
- <_>5 0 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4467370714992285e-003</threshold>
- <left_val>0.2287151962518692</left_val>
- <right_val>-0.1966446936130524</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 12 15 -1.</_>
- <_>9 13 4 5 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1232940033078194</threshold>
- <left_val>-0.1082564964890480</left_val>
- <right_val>0.0247283894568682</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 4 13 -1.</_>
- <_>7 2 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0588325895369053</threshold>
- <left_val>0.5579158067703247</left_val>
- <right_val>-0.0776306763291359</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 11 14 2 -1.</_>
- <_>3 11 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.7795920446515083e-003</threshold>
- <left_val>0.0949514880776405</left_val>
- <right_val>-0.5376737117767334</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 15 7 -1.</_>
- <_>7 12 5 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0111165698617697</threshold>
- <left_val>-0.0892886072397232</left_val>
- <right_val>0.4669542908668518</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 12 15 -1.</_>
- <_>9 13 4 5 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0153982602059841</threshold>
- <left_val>0.0904324874281883</left_val>
- <right_val>-0.1223379969596863</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 15 9 -1.</_>
- <_>5 14 5 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8570769615471363e-003</threshold>
- <left_val>0.1085970997810364</left_val>
- <right_val>-0.4096176028251648</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 15 12 8 -1.</_>
- <_>9 15 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0661747530102730</threshold>
- <left_val>-4.4282642193138599e-003</left_val>
- <right_val>-0.8805553913116455</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 12 8 -1.</_>
- <_>4 15 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0106364898383617</threshold>
- <left_val>-0.4454157054424286</left_val>
- <right_val>0.1095374003052712</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 3 14 -1.</_>
- <_>9 6 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0313635990023613</threshold>
- <left_val>0.8054689168930054</left_val>
- <right_val>-0.0498838908970356</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 4 14 -1.</_>
- <_>5 5 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.8021561279892921e-004</threshold>
- <left_val>-0.2342832982540131</left_val>
- <right_val>0.1693440973758698</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 3 14 -1.</_>
- <_>12 5 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3463829681277275e-003</threshold>
- <left_val>-0.1072918027639389</left_val>
- <right_val>0.2544754147529602</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 6 9 -1.</_>
- <_>3 10 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1919990219175816e-003</threshold>
- <left_val>-0.5149661898612976</left_val>
- <right_val>0.0851181373000145</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 16 10 -1.</_>
- <_>6 8 8 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0187216494232416</threshold>
- <left_val>-0.0840522125363350</left_val>
- <right_val>0.4783689975738525</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 17 6 6 -1.</_>
- <_>6 20 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7875440903007984e-003</threshold>
- <left_val>-0.2314565926790237</left_val>
- <right_val>0.1605298966169357</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 18 10 -1.</_>
- <_>10 10 9 5 2.</_>
- <_>1 15 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8765478208661079e-003</threshold>
- <left_val>0.0965593829751015</left_val>
- <right_val>-0.2383296042680740</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 7 4 -1.</_>
- <_>6 2 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.4661519825458527e-003</threshold>
- <left_val>-0.3787173032760620</left_val>
- <right_val>0.0878514871001244</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 19 3 -1.</_>
- <_>0 7 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0158294495195150</threshold>
- <left_val>0.5215951204299927</left_val>
- <right_val>-0.0739168673753738</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 11 6 6 -1.</_>
- <_>9 11 3 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0127719901502132</threshold>
- <left_val>0.1065872982144356</left_val>
- <right_val>-0.3285045921802521</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 9 5 -1.</_>
- <_>10 0 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0470007807016373</threshold>
- <left_val>-0.0295480005443096</left_val>
- <right_val>0.4846934974193573</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 9 4 -1.</_>
- <_>0 5 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1224800255149603e-003</threshold>
- <left_val>-0.2139565944671631</left_val>
- <right_val>0.1540776044130325</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 17 2 -1.</_>
- <_>1 19 17 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0136750061064959e-003</threshold>
- <left_val>0.2357473969459534</left_val>
- <right_val>-0.1453679949045181</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 4 8 -1.</_>
- <_>9 3 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2841319702565670e-003</threshold>
- <left_val>0.0805362164974213</left_val>
- <right_val>-0.3641724884510040</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 9 2 14 -1.</_>
- <_>9 9 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0176086891442537</threshold>
- <left_val>0.5385882258415222</left_val>
- <right_val>-0.0357418507337570</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 3 14 -1.</_>
- <_>9 8 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0347106084227562</threshold>
- <left_val>-0.0432614609599113</left_val>
- <right_val>0.7781760096549988</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 9 4 -1.</_>
- <_>10 3 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0164503492414951</threshold>
- <left_val>0.0418150909245014</left_val>
- <right_val>-0.3491267859935761</right_val></_></_></trees>
- <stage_threshold>-1.0599969625473022</stage_threshold>
- <parent>11</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 13 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 10 3 -1.</_>
- <_>5 12 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7846419941633940e-003</threshold>
- <left_val>0.2201481014490128</left_val>
- <right_val>-0.3691265881061554</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 4 12 -1.</_>
- <_>8 12 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1350408941507339e-004</threshold>
- <left_val>-0.3069599866867065</left_val>
- <right_val>0.0977177917957306</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 4 7 -1.</_>
- <_>5 12 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5726810563355684e-003</threshold>
- <left_val>-0.3778905868530273</left_val>
- <right_val>0.1704214960336685</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 17 12 6 -1.</_>
- <_>12 17 6 3 2.</_>
- <_>6 20 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8661757763475180e-004</threshold>
- <left_val>-0.3792907893657684</left_val>
- <right_val>0.0932899713516235</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 18 6 -1.</_>
- <_>9 16 9 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0357162393629551</threshold>
- <left_val>0.0731693133711815</left_val>
- <right_val>-0.6179289817810059</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 4 14 -1.</_>
- <_>14 0 2 7 2.</_>
- <_>12 7 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0351628400385380</threshold>
- <left_val>-0.0123282503336668</left_val>
- <right_val>0.4489463865756989</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 21 14 2 -1.</_>
- <_>8 21 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8216741308569908e-003</threshold>
- <left_val>-0.4950199127197266</left_val>
- <right_val>0.0880059525370598</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 19 8 4 -1.</_>
- <_>9 19 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7909301035106182e-004</threshold>
- <left_val>0.1115411967039108</left_val>
- <right_val>-0.2831655144691467</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 12 4 -1.</_>
- <_>5 0 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8164491094648838e-003</threshold>
- <left_val>0.1843418031930924</left_val>
- <right_val>-0.2372706979513168</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 8 5 -1.</_>
- <_>10 1 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.0218139812350273e-003</threshold>
- <left_val>-0.0537735596299171</left_val>
- <right_val>0.2617498934268951</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 6 10 -1.</_>
- <_>2 13 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.7481878213584423e-003</threshold>
- <left_val>-0.5047510862350464</left_val>
- <right_val>0.0766144171357155</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 9 3 14 -1.</_>
- <_>9 9 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5771231204271317e-003</threshold>
- <left_val>-0.1192611008882523</left_val>
- <right_val>0.3421041965484619</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 7 10 2 -1.</_>
- <_>9 7 10 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.6335519291460514e-003</threshold>
- <left_val>-0.4908828139305115</left_val>
- <right_val>0.0695420205593109</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 15 3 -1.</_>
- <_>7 16 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.1346959769725800e-003</threshold>
- <left_val>-0.0815914273262024</left_val>
- <right_val>0.4787966012954712</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 8 17 -1.</_>
- <_>9 1 4 17 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.8444558680057526e-003</threshold>
- <left_val>0.2012421041727066</left_val>
- <right_val>-0.2376928031444550</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 19 8 4 -1.</_>
- <_>9 19 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0348970703780651</threshold>
- <left_val>-0.9102467894554138</left_val>
- <right_val>0.0185795407742262</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 19 8 4 -1.</_>
- <_>6 19 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5042490344494581e-004</threshold>
- <left_val>0.1247946992516518</left_val>
- <right_val>-0.3071714937686920</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 8 7 -1.</_>
- <_>10 0 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.4668623059988022e-003</threshold>
- <left_val>0.1133294999599457</left_val>
- <right_val>-0.1611589044332504</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 8 7 -1.</_>
- <_>5 0 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0220534093677998</threshold>
- <left_val>-0.0797844007611275</left_val>
- <right_val>0.6073901057243347</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 16 7 4 -1.</_>
- <_>12 18 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2947797889355570e-005</threshold>
- <left_val>0.1444911956787109</left_val>
- <right_val>-0.1370615065097809</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 4 14 -1.</_>
- <_>9 0 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5134839862585068e-003</threshold>
- <left_val>-0.3074442148208618</left_val>
- <right_val>0.1027908027172089</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 18 15 3 -1.</_>
- <_>2 19 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0103119397535920</threshold>
- <left_val>-0.0702461972832680</left_val>
- <right_val>0.4830701053142548</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 4 7 -1.</_>
- <_>9 1 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4670448452234268e-003</threshold>
- <left_val>0.0702818036079407</left_val>
- <right_val>-0.4706951975822449</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 3 15 -1.</_>
- <_>12 5 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0301162395626307</threshold>
- <left_val>0.5237855911254883</left_val>
- <right_val>-0.0371096692979336</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 6 10 -1.</_>
- <_>0 10 3 5 2.</_>
- <_>3 15 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0126678496599197</threshold>
- <left_val>-0.6082589030265808</left_val>
- <right_val>0.0504446700215340</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 3 15 -1.</_>
- <_>12 5 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2987429983913898e-003</threshold>
- <left_val>-0.1180867999792099</left_val>
- <right_val>0.1739389002323151</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 3 15 -1.</_>
- <_>6 5 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5533209554851055e-003</threshold>
- <left_val>-0.1662597954273224</left_val>
- <right_val>0.1976895928382874</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 12 12 -1.</_>
- <_>6 5 6 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3321819901466370</threshold>
- <left_val>-0.9540778994560242</left_val>
- <right_val>4.1291080415248871e-003</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 12 16 -1.</_>
- <_>7 4 6 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4485369473695755e-003</threshold>
- <left_val>-0.0912205427885056</left_val>
- <right_val>0.3983474969863892</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 6 7 -1.</_>
- <_>13 4 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7633191570639610e-003</threshold>
- <left_val>-0.1206988990306854</left_val>
- <right_val>0.1616933941841126</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 4 16 -1.</_>
- <_>1 7 2 8 2.</_>
- <_>3 15 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4371229596436024e-003</threshold>
- <left_val>0.0859281867742538</left_val>
- <right_val>-0.4442718923091888</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 2 22 -1.</_>
- <_>11 12 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7019889093935490e-003</threshold>
- <left_val>-0.1951121985912323</left_val>
- <right_val>0.0711416602134705</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 14 3 -1.</_>
- <_>1 19 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4219670556485653e-003</threshold>
- <left_val>0.1908950060606003</left_val>
- <right_val>-0.1888048946857452</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 18 12 5 -1.</_>
- <_>11 18 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.9531630724668503e-003</threshold>
- <left_val>-0.2619152069091797</left_val>
- <right_val>0.0774881467223167</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 16 19 -1.</_>
- <_>5 0 8 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2655436098575592</threshold>
- <left_val>0.4789358079433441</left_val>
- <right_val>-0.0788302570581436</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 17 12 6 -1.</_>
- <_>9 17 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4960828274488449e-003</threshold>
- <left_val>0.0647488087415695</left_val>
- <right_val>-0.4089879095554352</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 11 8 4 -1.</_>
- <_>7 11 4 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0160609297454357</threshold>
- <left_val>0.0948685035109520</left_val>
- <right_val>-0.3504076898097992</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 9 3 14 -1.</_>
- <_>11 9 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5279421135783195e-003</threshold>
- <left_val>0.2270454019308090</left_val>
- <right_val>-0.1501103937625885</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 15 8 -1.</_>
- <_>7 11 5 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0151897203177214</threshold>
- <left_val>-0.0860336422920227</left_val>
- <right_val>0.5037524104118347</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 7 8 -1.</_>
- <_>11 6 7 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.8117031157016754e-003</threshold>
- <left_val>0.0919458568096161</left_val>
- <right_val>-0.2713471055030823</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 8 7 -1.</_>
- <_>8 6 4 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.9835934340953827e-003</threshold>
- <left_val>-0.3572193086147308</left_val>
- <right_val>0.1156433001160622</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 9 3 14 -1.</_>
- <_>11 9 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0254724305123091</threshold>
- <left_val>-0.0388618782162666</left_val>
- <right_val>0.5070732235908508</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 3 14 -1.</_>
- <_>7 9 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3594819465652108e-003</threshold>
- <left_val>-0.1512742042541504</left_val>
- <right_val>0.2333243936300278</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 6 12 -1.</_>
- <_>7 0 3 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0146731296554208</threshold>
- <left_val>0.0763864815235138</left_val>
- <right_val>-0.4312626123428345</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 3 16 -1.</_>
- <_>6 2 1 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0217572394758463</threshold>
- <left_val>0.6030660867691040</left_val>
- <right_val>-0.0579266697168350</right_val></_></_></trees>
- <stage_threshold>-1.0216469764709473</stage_threshold>
- <parent>12</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 14 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 15 7 -1.</_>
- <_>6 4 5 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0191228501498699</threshold>
- <left_val>0.2142305970191956</left_val>
- <right_val>-0.4017831087112427</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 13 4 8 -1.</_>
- <_>12 17 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0749661275185645e-004</threshold>
- <left_val>0.1083780005574226</left_val>
- <right_val>-0.0978470072150230</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 12 12 -1.</_>
- <_>6 15 4 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0184195600450039</threshold>
- <left_val>0.0948170125484467</left_val>
- <right_val>-0.4482589960098267</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 15 5 6 -1.</_>
- <_>12 18 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0946850893087685e-004</threshold>
- <left_val>0.1156722009181976</left_val>
- <right_val>-0.0692913383245468</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 19 16 -1.</_>
- <_>0 8 19 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0244168303906918</threshold>
- <left_val>-0.2640377879142761</left_val>
- <right_val>0.1458850950002670</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 20 15 3 -1.</_>
- <_>9 20 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9483308792114258e-003</threshold>
- <left_val>0.0787035673856735</left_val>
- <right_val>-0.3977065086364746</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 4 8 -1.</_>
- <_>9 0 4 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0154980598017573</threshold>
- <left_val>-0.0686233714222908</left_val>
- <right_val>0.6359875798225403</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 15 12 6 -1.</_>
- <_>11 15 6 3 2.</_>
- <_>5 18 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0103973699733615</threshold>
- <left_val>0.0531162582337856</left_val>
- <right_val>-0.2475759983062744</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 15 12 6 -1.</_>
- <_>2 15 6 3 2.</_>
- <_>8 18 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0350650409236550e-003</threshold>
- <left_val>-0.2295361012220383</left_val>
- <right_val>0.2162367999553680</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 9 5 -1.</_>
- <_>11 0 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.9717521546408534e-004</threshold>
- <left_val>0.1633094996213913</left_val>
- <right_val>-0.2793000042438507</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 19 14 4 -1.</_>
- <_>0 19 7 2 2.</_>
- <_>7 21 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1055100476369262e-003</threshold>
- <left_val>-0.2672117054462433</left_val>
- <right_val>0.1380949020385742</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 14 18 7 -1.</_>
- <_>1 14 9 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0181287601590157</threshold>
- <left_val>0.0786025226116180</left_val>
- <right_val>-0.3374832868576050</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 8 8 -1.</_>
- <_>5 1 4 4 2.</_>
- <_>9 5 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4303029747679830e-003</threshold>
- <left_val>0.1566804945468903</left_val>
- <right_val>-0.2542249858379364</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 6 12 -1.</_>
- <_>9 6 3 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0106502203270793</threshold>
- <left_val>-0.0416386015713215</left_val>
- <right_val>0.3263407051563263</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 14 4 -1.</_>
- <_>9 0 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0680139530450106e-003</threshold>
- <left_val>0.1799698024988174</left_val>
- <right_val>-0.2067306041717529</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 20 15 3 -1.</_>
- <_>9 20 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.0095082521438599e-003</threshold>
- <left_val>-0.2877897918224335</left_val>
- <right_val>0.0754924491047859</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 20 15 3 -1.</_>
- <_>5 20 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0118575599044561</threshold>
- <left_val>-0.5548521280288696</left_val>
- <right_val>0.0474650003015995</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 16 9 -1.</_>
- <_>6 6 8 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1944015026092529</threshold>
- <left_val>0.4956459999084473</left_val>
- <right_val>-0.0685222670435905</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 6 12 -1.</_>
- <_>7 6 3 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0127861695364118</threshold>
- <left_val>-0.0582010112702847</left_val>
- <right_val>0.5119485855102539</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 17 9 6 -1.</_>
- <_>12 17 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1360739590600133e-003</threshold>
- <left_val>-0.2121652960777283</left_val>
- <right_val>0.1463954001665115</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 4 9 -1.</_>
- <_>6 7 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7541511119343340e-004</threshold>
- <left_val>0.1140606030821800</left_val>
- <right_val>-0.2793666124343872</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 6 2 16 -1.</_>
- <_>13 6 1 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2142009846866131e-003</threshold>
- <left_val>0.0285687893629074</left_val>
- <right_val>-0.3248505890369415</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 12 9 -1.</_>
- <_>7 5 6 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5166439376771450e-003</threshold>
- <left_val>-0.0955563783645630</left_val>
- <right_val>0.3603233993053436</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 6 2 16 -1.</_>
- <_>13 6 1 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7354219453409314e-003</threshold>
- <left_val>-0.0808048769831657</left_val>
- <right_val>0.0538515709340572</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 2 16 -1.</_>
- <_>5 6 1 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.9608418270945549e-003</threshold>
- <left_val>-0.6013150811195374</left_val>
- <right_val>0.0455094911158085</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 3 15 -1.</_>
- <_>13 0 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7833311408758163e-003</threshold>
- <left_val>-0.0944979712367058</left_val>
- <right_val>0.3192416131496429</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 3 15 -1.</_>
- <_>5 0 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0243569742888212e-003</threshold>
- <left_val>0.2673755884170532</left_val>
- <right_val>-0.1167927980422974</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 8 8 -1.</_>
- <_>8 2 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6362948380410671e-003</threshold>
- <left_val>0.0464910902082920</left_val>
- <right_val>-0.2398225963115692</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 6 5 -1.</_>
- <_>9 0 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1751220338046551e-003</threshold>
- <left_val>-0.3183174133300781</left_val>
- <right_val>0.1163455024361610</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 11 16 -1.</_>
- <_>4 11 11 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0254248902201653</threshold>
- <left_val>0.0756000578403473</left_val>
- <right_val>-0.3735963106155396</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 5 8 -1.</_>
- <_>7 12 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9950129576027393e-004</threshold>
- <left_val>-0.2620686888694763</left_val>
- <right_val>0.1434555947780609</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 18 14 3 -1.</_>
- <_>4 19 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9724060334265232e-003</threshold>
- <left_val>0.2039508968591690</left_val>
- <right_val>-0.1189631000161171</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 17 3 -1.</_>
- <_>1 19 17 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4637179449200630e-003</threshold>
- <left_val>-0.1368733942508698</left_val>
- <right_val>0.3409825861454010</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 20 10 3 -1.</_>
- <_>9 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0143977096304297</threshold>
- <left_val>0.0248468890786171</left_val>
- <right_val>-0.6541594862937927</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 21 14 2 -1.</_>
- <_>8 21 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4848919818177819e-005</threshold>
- <left_val>0.1388493031263351</left_val>
- <right_val>-0.2107747942209244</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 18 14 3 -1.</_>
- <_>4 19 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0383395105600357</threshold>
- <left_val>0.5866839289665222</left_val>
- <right_val>-0.0362458601593971</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 5 6 -1.</_>
- <_>2 19 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.4605712648481131e-004</threshold>
- <left_val>0.2125933021306992</left_val>
- <right_val>-0.1379106938838959</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 11 5 12 -1.</_>
- <_>13 15 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0130364997312427</threshold>
- <left_val>0.0506199710071087</left_val>
- <right_val>-0.2315009981393814</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 16 3 -1.</_>
- <_>1 10 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4273560848087072e-003</threshold>
- <left_val>0.2430299967527390</left_val>
- <right_val>-0.1131595000624657</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 5 9 -1.</_>
- <_>7 9 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3351681455969810e-003</threshold>
- <left_val>-0.3554948866367340</left_val>
- <right_val>0.0949484035372734</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 7 14 -1.</_>
- <_>6 7 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0575108602643013</threshold>
- <left_val>0.4937813878059387</left_val>
- <right_val>-0.0606641210615635</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 16 6 7 -1.</_>
- <_>13 16 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8376341369003057e-004</threshold>
- <left_val>-0.1941725015640259</left_val>
- <right_val>0.1423459053039551</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 3 15 -1.</_>
- <_>2 4 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8113872334361076e-003</threshold>
- <left_val>0.0475620590150356</left_val>
- <right_val>-0.5841649174690247</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 8 8 -1.</_>
- <_>14 0 4 4 2.</_>
- <_>10 4 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0107881696894765</threshold>
- <left_val>-0.0468558892607689</left_val>
- <right_val>0.1654801070690155</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 3 14 -1.</_>
- <_>2 9 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3571690069511533e-003</threshold>
- <left_val>-0.3251067996025085</left_val>
- <right_val>0.0940904766321182</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 13 5 9 -1.</_>
- <_>13 16 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0101959798485041</threshold>
- <left_val>-0.1469684988260269</left_val>
- <right_val>0.0262460596859455</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 13 5 9 -1.</_>
- <_>1 16 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2560819741338491e-003</threshold>
- <left_val>0.2285338044166565</left_val>
- <right_val>-0.1626566052436829</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 14 7 6 -1.</_>
- <_>12 16 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6750420955941081e-004</threshold>
- <left_val>-0.1343066990375519</left_val>
- <right_val>0.1398756951093674</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 9 6 -1.</_>
- <_>4 17 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0975170191377401e-003</threshold>
- <left_val>-0.1298761069774628</left_val>
- <right_val>0.1997846961021423</right_val></_></_></trees>
- <stage_threshold>-1.0149190425872803</stage_threshold>
- <parent>13</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 15 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 13 10 3 -1.</_>
- <_>7 13 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6917610559612513e-003</threshold>
- <left_val>0.2268279045820236</left_val>
- <right_val>-0.4116738140583038</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 10 5 -1.</_>
- <_>9 0 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.4609148800373077e-003</threshold>
- <left_val>0.1630502045154572</left_val>
- <right_val>-0.2294901013374329</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 2 15 -1.</_>
- <_>2 8 1 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3874800428748131e-003</threshold>
- <left_val>0.0776446908712387</left_val>
- <right_val>-0.4746511876583099</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 6 18 -1.</_>
- <_>15 0 2 18 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3596849534660578e-003</threshold>
- <left_val>-0.1472281068563461</left_val>
- <right_val>0.1375565975904465</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 21 14 2 -1.</_>
- <_>7 21 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2649099119007587e-003</threshold>
- <left_val>-0.2902786135673523</left_val>
- <right_val>0.1226186975836754</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 19 8 4 -1.</_>
- <_>9 19 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5420072749257088e-004</threshold>
- <left_val>0.1159199029207230</left_val>
- <right_val>-0.2306652963161469</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 21 16 2 -1.</_>
- <_>9 21 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9706019666045904e-003</threshold>
- <left_val>0.1180830001831055</left_val>
- <right_val>-0.3787943124771118</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 16 4 -1.</_>
- <_>6 0 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0175030808895826</threshold>
- <left_val>-0.0941615998744965</left_val>
- <right_val>0.4793323874473572</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 9 5 -1.</_>
- <_>6 0 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9575270600616932e-003</threshold>
- <left_val>0.1733669936656952</left_val>
- <right_val>-0.3167332112789154</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 8 10 -1.</_>
- <_>10 5 8 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.2623870074748993</threshold>
- <left_val>-0.7440528869628906</left_val>
- <right_val>8.9512793347239494e-003</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 18 8 -1.</_>
- <_>0 5 18 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5493800900876522e-003</threshold>
- <left_val>-0.2408874034881592</left_val>
- <right_val>0.1421204060316086</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 8 10 -1.</_>
- <_>10 5 8 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0148425698280334</threshold>
- <left_val>0.0551663115620613</left_val>
- <right_val>-0.0853630006313324</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 20 10 3 -1.</_>
- <_>9 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0181934908032417</threshold>
- <left_val>-0.7538909912109375</left_val>
- <right_val>0.0440624989569187</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 18 14 3 -1.</_>
- <_>4 19 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9381130114197731e-003</threshold>
- <left_val>0.1476213932037354</left_val>
- <right_val>-0.1421477049589157</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 6 7 -1.</_>
- <_>4 16 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1375028453767300e-003</threshold>
- <left_val>-0.5417520999908447</left_val>
- <right_val>0.0528726913034916</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 18 14 3 -1.</_>
- <_>4 19 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0166300795972347</threshold>
- <left_val>-0.0600058101117611</left_val>
- <right_val>0.5229414105415344</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 6 7 -1.</_>
- <_>8 0 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.7470665350556374e-003</threshold>
- <left_val>-0.3177677094936371</left_val>
- <right_val>0.0940777286887169</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 15 12 -1.</_>
- <_>7 6 5 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3915967941284180</threshold>
- <left_val>0.5155050158500671</left_val>
- <right_val>-0.0861782133579254</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 4 9 -1.</_>
- <_>7 10 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0104578603059053</threshold>
- <left_val>-0.0544422306120396</left_val>
- <right_val>0.5508633852005005</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 8 7 -1.</_>
- <_>12 9 4 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0924795866012573</threshold>
- <left_val>9.5865959301590919e-003</left_val>
- <right_val>-0.7520524263381958</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 18 18 -1.</_>
- <_>0 1 9 9 2.</_>
- <_>9 10 9 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0133833298459649</threshold>
- <left_val>-0.2590928077697754</left_val>
- <right_val>0.1225519999861717</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 7 8 6 -1.</_>
- <_>9 9 8 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0192979294806719</threshold>
- <left_val>-0.1868654936552048</left_val>
- <right_val>0.0426703803241253</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 3 14 -1.</_>
- <_>8 9 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1118740076199174e-003</threshold>
- <left_val>0.1458609998226166</left_val>
- <right_val>-0.2274280935525894</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 7 8 6 -1.</_>
- <_>9 9 8 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0232090596109629</threshold>
- <left_val>0.0217691995203495</left_val>
- <right_val>-0.2400193065404892</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 8 4 -1.</_>
- <_>5 0 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9435071200132370e-003</threshold>
- <left_val>-0.0848145708441734</left_val>
- <right_val>0.3838810026645660</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 7 8 6 -1.</_>
- <_>9 9 8 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1024966984987259</threshold>
- <left_val>-0.7061861157417297</left_val>
- <right_val>0.0125809498131275</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 6 8 -1.</_>
- <_>10 9 2 8 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0140364300459623</threshold>
- <left_val>-0.3842788040637970</left_val>
- <right_val>0.0876787230372429</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 6 19 -1.</_>
- <_>15 0 2 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8071340210735798e-003</threshold>
- <left_val>-0.0759413465857506</left_val>
- <right_val>0.0760143324732780</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 6 19 -1.</_>
- <_>2 0 2 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8163239844143391e-003</threshold>
- <left_val>-0.1640291064977646</left_val>
- <right_val>0.2012411057949066</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 8 2 14 -1.</_>
- <_>13 8 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0274710152298212e-003</threshold>
- <left_val>-0.2811872959136963</left_val>
- <right_val>0.0686712414026260</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 16 3 -1.</_>
- <_>0 5 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6530510038137436e-003</threshold>
- <left_val>0.2142737954854965</left_val>
- <right_val>-0.1303835958242416</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 4 10 -1.</_>
- <_>8 13 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9757499471306801e-003</threshold>
- <left_val>-0.2373799979686737</left_val>
- <right_val>0.0512905493378639</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 17 10 6 -1.</_>
- <_>3 17 5 3 2.</_>
- <_>8 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9589749909937382e-003</threshold>
- <left_val>-0.1324627995491028</left_val>
- <right_val>0.2370340973138809</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 8 2 14 -1.</_>
- <_>13 8 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.2270620148628950e-004</threshold>
- <left_val>0.0504780709743500</left_val>
- <right_val>-0.1354480981826782</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 16 5 -1.</_>
- <_>5 7 8 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0150577295571566</threshold>
- <left_val>-0.0669544637203217</left_val>
- <right_val>0.4536899924278259</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 5 4 9 -1.</_>
- <_>15 5 2 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.5838429145514965e-003</threshold>
- <left_val>0.0390546694397926</left_val>
- <right_val>-0.1951650977134705</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 3 14 -1.</_>
- <_>7 0 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9128929600119591e-003</threshold>
- <left_val>0.1760496944189072</left_val>
- <right_val>-0.1563968956470490</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 12 12 -1.</_>
- <_>10 8 4 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.6438639760017395</threshold>
- <left_val>-0.0117776999250054</left_val>
- <right_val>1.0000569820404053</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 4 9 -1.</_>
- <_>9 3 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1160277798771858e-003</threshold>
- <left_val>0.0954646691679955</left_val>
- <right_val>-0.3783237040042877</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 7 8 -1.</_>
- <_>10 6 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0683254972100258</threshold>
- <left_val>-3.9297499461099505e-004</left_val>
- <right_val>-0.9998624920845032</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 7 8 -1.</_>
- <_>2 6 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0440717190504074</threshold>
- <left_val>0.0287165492773056</left_val>
- <right_val>-0.9030649065971375</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 18 14 3 -1.</_>
- <_>4 19 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0157125201076269</threshold>
- <left_val>0.2488802969455719</left_val>
- <right_val>-0.0530662611126900</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 2 14 -1.</_>
- <_>5 9 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9486829191446304e-003</threshold>
- <left_val>-0.5021412968635559</left_val>
- <right_val>0.0520896092057228</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 15 7 8 -1.</_>
- <_>12 17 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1841469677165151e-003</threshold>
- <left_val>0.0621228888630867</left_val>
- <right_val>-0.1647989004850388</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 7 20 -1.</_>
- <_>6 5 7 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1138570979237557</threshold>
- <left_val>0.5672857165336609</left_val>
- <right_val>-0.0388643182814121</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 16 4 -1.</_>
- <_>10 1 8 2 2.</_>
- <_>2 3 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2493737787008286e-003</threshold>
- <left_val>0.0878581404685974</left_val>
- <right_val>-0.2867594957351685</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 3 10 -1.</_>
- <_>4 12 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3781529162079096e-003</threshold>
- <left_val>0.2668414115905762</left_val>
- <right_val>-0.0932913869619370</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 8 8 -1.</_>
- <_>12 8 4 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0636205226182938</threshold>
- <left_val>0.1515336930751801</left_val>
- <right_val>-0.0153540298342705</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 12 8 -1.</_>
- <_>3 10 6 4 2.</_>
- <_>9 14 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9275481402873993e-003</threshold>
- <left_val>0.0882685184478760</left_val>
- <right_val>-0.3187279105186462</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 4 10 -1.</_>
- <_>8 9 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0556660126894712e-003</threshold>
- <left_val>-0.1022611036896706</left_val>
- <right_val>0.0605466999113560</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 5 9 -1.</_>
- <_>7 10 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.1879200190305710e-003</threshold>
- <left_val>0.0809634029865265</left_val>
- <right_val>-0.3503153920173645</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 17 3 -1.</_>
- <_>1 5 17 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9727380499243736e-003</threshold>
- <left_val>-0.1033485010266304</left_val>
- <right_val>0.2745018899440765</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 14 3 -1.</_>
- <_>2 4 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7149309860542417e-003</threshold>
- <left_val>-0.1232967972755432</left_val>
- <right_val>0.2156181931495667</right_val></_></_></trees>
- <stage_threshold>-0.9315267801284790</stage_threshold>
- <parent>14</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 16 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 14 2 -1.</_>
- <_>2 7 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0145478900521994</threshold>
- <left_val>-0.5704287290573120</left_val>
- <right_val>0.1016409024596214</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 19 8 4 -1.</_>
- <_>10 19 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2570459512062371e-004</threshold>
- <left_val>0.0775668919086456</left_val>
- <right_val>-0.2952415049076080</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 5 22 -1.</_>
- <_>5 11 5 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4022490084171295e-003</threshold>
- <left_val>-0.3261851966381073</left_val>
- <right_val>0.1368803977966309</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 19 8 4 -1.</_>
- <_>10 19 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1469001919031143e-003</threshold>
- <left_val>-0.2248636037111282</left_val>
- <right_val>0.1488638967275620</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 19 8 4 -1.</_>
- <_>5 19 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1212199246510863e-004</threshold>
- <left_val>0.1128714978694916</left_val>
- <right_val>-0.3288873136043549</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 4 9 -1.</_>
- <_>8 12 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0187426097691059</threshold>
- <left_val>-0.0180800706148148</left_val>
- <right_val>0.3011532127857208</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 9 5 -1.</_>
- <_>4 16 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9675778932869434e-003</threshold>
- <left_val>-0.2594884932041168</left_val>
- <right_val>0.1330806016921997</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 20 15 3 -1.</_>
- <_>8 20 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0302950795739889</threshold>
- <left_val>-0.6004132032394409</left_val>
- <right_val>0.0335165485739708</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 10 14 -1.</_>
- <_>8 8 5 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4835487864911556e-003</threshold>
- <left_val>-0.0777680873870850</left_val>
- <right_val>0.4626832008361816</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 7 6 -1.</_>
- <_>10 5 7 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.2889559622853994e-003</threshold>
- <left_val>0.0604118295013905</left_val>
- <right_val>-0.1749873012304306</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 6 7 -1.</_>
- <_>9 5 3 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.6078320331871510e-003</threshold>
- <left_val>-0.2955718040466309</left_val>
- <right_val>0.1544979065656662</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 9 10 -1.</_>
- <_>10 4 9 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.2334866970777512</threshold>
- <left_val>-0.6375194787979126</left_val>
- <right_val>0.0137483095750213</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 4 10 9 -1.</_>
- <_>9 4 5 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.8999718166887760e-003</threshold>
- <left_val>0.1271378993988037</left_val>
- <right_val>-0.3268949091434479</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 15 7 8 -1.</_>
- <_>12 17 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0120737198740244</threshold>
- <left_val>0.0166142601519823</left_val>
- <right_val>-0.2270717024803162</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 7 8 -1.</_>
- <_>0 17 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6356011191383004e-004</threshold>
- <left_val>0.1687919050455093</left_val>
- <right_val>-0.1960531026124954</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 19 4 -1.</_>
- <_>0 17 19 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7435080371797085e-003</threshold>
- <left_val>-0.1383100003004074</left_val>
- <right_val>0.2210350930690765</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 20 10 3 -1.</_>
- <_>9 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6066621802747250e-003</threshold>
- <left_val>0.0443545281887054</left_val>
- <right_val>-0.6736524105072022</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 4 15 -1.</_>
- <_>10 8 2 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9419698081910610e-003</threshold>
- <left_val>0.1756900995969772</left_val>
- <right_val>-0.1369722038507462</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 4 14 -1.</_>
- <_>4 7 2 7 2.</_>
- <_>6 14 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9261527601629496e-004</threshold>
- <left_val>-0.2103513032197952</left_val>
- <right_val>0.1324183046817780</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 8 2 15 -1.</_>
- <_>12 8 1 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6582869943231344e-003</threshold>
- <left_val>0.1542036980390549</left_val>
- <right_val>-0.1056322008371353</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 2 15 -1.</_>
- <_>6 8 1 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4477679505944252e-003</threshold>
- <left_val>-0.2892096042633057</left_val>
- <right_val>0.1495039016008377</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 4 11 -1.</_>
- <_>8 12 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0310580255463719e-003</threshold>
- <left_val>0.0885729715228081</left_val>
- <right_val>-0.0903758332133293</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 12 4 11 -1.</_>
- <_>9 12 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2927519641816616e-003</threshold>
- <left_val>-0.1108772978186607</left_val>
- <right_val>0.3000374138355255</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 3 10 -1.</_>
- <_>10 4 3 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.6668019816279411e-003</threshold>
- <left_val>-0.0620541088283062</left_val>
- <right_val>0.2265225946903229</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 4 7 -1.</_>
- <_>5 16 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3452100101858377e-003</threshold>
- <left_val>0.0920129716396332</left_val>
- <right_val>-0.3594416081905365</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 17 16 3 -1.</_>
- <_>3 18 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0149815697222948</threshold>
- <left_val>0.3663609027862549</left_val>
- <right_val>-0.0645568072795868</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 4 10 -1.</_>
- <_>2 12 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2536462210118771e-003</threshold>
- <left_val>0.0693813636898994</left_val>
- <right_val>-0.4102383852005005</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 14 12 6 -1.</_>
- <_>10 14 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0509373992681503</threshold>
- <left_val>0.0178699307143688</left_val>
- <right_val>-0.6052407026290894</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 12 6 -1.</_>
- <_>3 14 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0756580159068108e-003</threshold>
- <left_val>-0.2377794981002808</left_val>
- <right_val>0.1422331929206848</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 12 4 -1.</_>
- <_>11 0 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.1086040437221527e-003</threshold>
- <left_val>0.1491537988185883</left_val>
- <right_val>-0.1921306997537613</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 4 10 -1.</_>
- <_>9 0 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0133385201916099</threshold>
- <left_val>-0.4971103072166443</left_val>
- <right_val>0.0657551586627960</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 10 3 -1.</_>
- <_>9 0 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0319979712367058</threshold>
- <left_val>-0.0649275928735733</left_val>
- <right_val>0.6657704114913940</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 10 3 -1.</_>
- <_>5 0 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0496860593557358</threshold>
- <left_val>0.5067688822746277</left_val>
- <right_val>-0.0646769106388092</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 8 8 -1.</_>
- <_>10 5 4 4 2.</_>
- <_>6 9 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0286428779363632e-003</threshold>
- <left_val>0.0882148966193199</left_val>
- <right_val>-0.2792361974716187</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 2 14 -1.</_>
- <_>5 6 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.9053061306476593e-003</threshold>
- <left_val>-0.6145234704017639</left_val>
- <right_val>0.0356314890086651</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 8 6 10 -1.</_>
- <_>12 8 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8130919933319092e-003</threshold>
- <left_val>-0.0936536267399788</left_val>
- <right_val>0.0998173579573631</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 6 10 -1.</_>
- <_>5 8 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0110304197296500</threshold>
- <left_val>0.4579817056655884</left_val>
- <right_val>-0.0651249736547470</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 15 12 6 -1.</_>
- <_>9 15 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5703570097684860e-003</threshold>
- <left_val>0.0471136607229710</left_val>
- <right_val>-0.1334746032953262</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 15 12 6 -1.</_>
- <_>6 15 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6482901088893414e-003</threshold>
- <left_val>0.0739326775074005</left_val>
- <right_val>-0.4214586019515991</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 5 8 -1.</_>
- <_>8 9 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0479872152209282e-004</threshold>
- <left_val>-0.2051727026700974</left_val>
- <right_val>0.0951282531023026</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 14 4 -1.</_>
- <_>7 2 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0261257607489824</threshold>
- <left_val>-0.0688169673085213</left_val>
- <right_val>0.4264478981494904</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 6 7 -1.</_>
- <_>9 1 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4811189658939838e-003</threshold>
- <left_val>0.1130238994956017</left_val>
- <right_val>-0.4702106118202210</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 4 17 -1.</_>
- <_>7 2 2 17 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0454841814935207</threshold>
- <left_val>0.5410146713256836</left_val>
- <right_val>-0.0568048395216465</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 9 15 -1.</_>
- <_>11 6 3 5 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0689561367034912</threshold>
- <left_val>0.0344441197812557</left_val>
- <right_val>-0.1741154938936234</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 12 4 -1.</_>
- <_>4 0 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0358948968350887e-003</threshold>
- <left_val>0.1336694061756134</left_val>
- <right_val>-0.2098592072725296</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 8 8 -1.</_>
- <_>11 5 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4390050200745463e-003</threshold>
- <left_val>-0.1644961982965469</left_val>
- <right_val>0.0988863483071327</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 8 8 -1.</_>
- <_>0 5 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0301804803311825</threshold>
- <left_val>0.0876353830099106</left_val>
- <right_val>-0.3946411907672882</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 8 3 14 -1.</_>
- <_>11 8 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8663588929921389e-003</threshold>
- <left_val>0.1596461981534958</left_val>
- <right_val>-0.1184082999825478</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 4 10 3 -1.</_>
- <_>9 4 5 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0107534900307655</threshold>
- <left_val>-0.0571420602500439</left_val>
- <right_val>0.5012527704238892</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 8 2 11 -1.</_>
- <_>11 8 1 11 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0109781501814723</threshold>
- <left_val>0.0359851606190205</left_val>
- <right_val>-0.3864648044109345</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 13 4 8 -1.</_>
- <_>3 17 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.8152219066396356e-004</threshold>
- <left_val>0.1824809014797211</left_val>
- <right_val>-0.1643594950437546</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 11 8 12 -1.</_>
- <_>10 17 8 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.9936108775436878e-003</threshold>
- <left_val>-0.2655623853206635</left_val>
- <right_val>0.0944361016154289</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 3 14 -1.</_>
- <_>7 8 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0231257304549217</threshold>
- <left_val>-0.0591019392013550</left_val>
- <right_val>0.5735905766487122</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 9 2 10 -1.</_>
- <_>10 9 1 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0170555207878351</threshold>
- <left_val>-0.5456724762916565</left_val>
- <right_val>0.0271531306207180</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 11 6 6 -1.</_>
- <_>8 11 3 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0151922898367047</threshold>
- <left_val>0.0925809815526009</left_val>
- <right_val>-0.2973513901233673</right_val></_></_></trees>
- <stage_threshold>-0.9398486018180847</stage_threshold>
- <parent>15</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 17 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 16 4 -1.</_>
- <_>5 6 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0215891394764185</threshold>
- <left_val>0.3377926051616669</left_val>
- <right_val>-0.2672545909881592</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 2 14 -1.</_>
- <_>12 7 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3885431736707687e-003</threshold>
- <left_val>-0.2675912976264954</left_val>
- <right_val>0.2143868952989578</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 3 14 -1.</_>
- <_>8 9 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4394609499722719e-003</threshold>
- <left_val>0.1884108930826187</left_val>
- <right_val>-0.2349513024091721</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 7 2 11 -1.</_>
- <_>11 7 1 11 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.9824391715228558e-003</threshold>
- <left_val>0.0466899089515209</left_val>
- <right_val>-0.1798482984304428</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 11 2 -1.</_>
- <_>8 7 11 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.1252959161065519e-004</threshold>
- <left_val>0.1726770997047424</left_val>
- <right_val>-0.1878277957439423</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 6 5 -1.</_>
- <_>7 0 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3181109465658665e-003</threshold>
- <left_val>0.1208112016320229</left_val>
- <right_val>-0.3237386941909790</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 9 5 -1.</_>
- <_>8 0 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0711369626224041e-003</threshold>
- <left_val>-0.2749837934970856</left_val>
- <right_val>0.1386826932430267</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 17 10 6 -1.</_>
- <_>12 17 5 3 2.</_>
- <_>7 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4392608106136322e-003</threshold>
- <left_val>-0.2227901965379715</left_val>
- <right_val>0.1715514063835144</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 4 15 -1.</_>
- <_>8 6 2 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1352670155465603e-003</threshold>
- <left_val>-0.1132285967469215</left_val>
- <right_val>0.2842895984649658</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 10 3 -1.</_>
- <_>5 11 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0205409750342369e-003</threshold>
- <left_val>-0.2454255074262619</left_val>
- <right_val>0.0949575006961823</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 3 14 -1.</_>
- <_>9 7 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.5228617750108242e-003</threshold>
- <left_val>0.3210678994655609</left_val>
- <right_val>-0.0973723679780960</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 8 2 10 -1.</_>
- <_>10 8 1 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.4146090658614412e-005</threshold>
- <left_val>-0.1526933014392853</left_val>
- <right_val>0.0851288363337517</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 9 18 -1.</_>
- <_>6 9 3 6 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0476060397922993</threshold>
- <left_val>0.0793397575616837</left_val>
- <right_val>-0.2959941923618317</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 10 12 -1.</_>
- <_>13 0 5 6 2.</_>
- <_>8 6 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0409286618232727</threshold>
- <left_val>-0.0351422615349293</left_val>
- <right_val>0.3759357929229736</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 12 11 -1.</_>
- <_>4 12 6 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0111618898808956</threshold>
- <left_val>-0.2674781084060669</left_val>
- <right_val>0.0891817882657051</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 15 9 -1.</_>
- <_>7 7 5 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2988845109939575</threshold>
- <left_val>0.4801439940929413</left_val>
- <right_val>-0.0724850520491600</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 10 10 -1.</_>
- <_>8 7 5 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0115143600851297</threshold>
- <left_val>-0.0592182502150536</left_val>
- <right_val>0.4096263945102692</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 8 2 10 -1.</_>
- <_>10 8 1 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.6182739529758692e-003</threshold>
- <left_val>-0.1847873926162720</left_val>
- <right_val>0.0398015603423119</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 18 6 5 -1.</_>
- <_>5 18 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2829460320062935e-004</threshold>
- <left_val>0.1071091964840889</left_val>
- <right_val>-0.2415527999401093</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 20 10 3 -1.</_>
- <_>9 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.9328160025179386e-003</threshold>
- <left_val>-0.2984572052955627</left_val>
- <right_val>0.0456579588353634</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 4 14 -1.</_>
- <_>5 0 2 7 2.</_>
- <_>7 7 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3937888480722904e-003</threshold>
- <left_val>0.1836351007223129</left_val>
- <right_val>-0.1404941976070404</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 10 12 -1.</_>
- <_>13 0 5 6 2.</_>
- <_>8 6 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.1702711023390293e-003</threshold>
- <left_val>-0.0518900193274021</left_val>
- <right_val>0.1021158024668694</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 8 18 -1.</_>
- <_>2 0 4 9 2.</_>
- <_>6 9 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0103909997269511</threshold>
- <left_val>-0.1342698931694031</left_val>
- <right_val>0.1913730949163437</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 8 4 -1.</_>
- <_>10 0 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0130047397688031</threshold>
- <left_val>-0.0459227189421654</left_val>
- <right_val>0.3052693009376526</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 9 9 2 -1.</_>
- <_>9 9 9 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.0645021945238113e-003</threshold>
- <left_val>-0.4847716093063355</left_val>
- <right_val>0.0693384632468224</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 7 3 10 -1.</_>
- <_>15 12 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7050418904982507e-004</threshold>
- <left_val>0.1009071990847588</left_val>
- <right_val>-0.0689112767577171</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 3 10 -1.</_>
- <_>1 12 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8882551062852144e-004</threshold>
- <left_val>-0.1674278974533081</left_val>
- <right_val>0.1896588951349258</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 6 4 7 -1.</_>
- <_>15 6 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8583559691905975e-003</threshold>
- <left_val>-0.4078938961029053</left_val>
- <right_val>0.0514833517372608</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 15 6 7 -1.</_>
- <_>6 15 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4327960349619389e-003</threshold>
- <left_val>-0.1426250934600830</left_val>
- <right_val>0.1898719072341919</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 16 20 -1.</_>
- <_>10 2 8 10 2.</_>
- <_>2 12 8 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0209997091442347</threshold>
- <left_val>0.0921537727117538</left_val>
- <right_val>-0.3077355027198792</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 17 7 6 -1.</_>
- <_>4 19 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2740170825272799e-003</threshold>
- <left_val>0.1517627984285355</left_val>
- <right_val>-0.1652870029211044</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 15 6 -1.</_>
- <_>3 18 15 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0150755401700735</threshold>
- <left_val>-0.3103924095630646</left_val>
- <right_val>0.0656969398260117</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 14 3 -1.</_>
- <_>0 19 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.5290662720799446e-003</threshold>
- <left_val>-0.0676930174231529</left_val>
- <right_val>0.4069203138351440</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 20 10 3 -1.</_>
- <_>9 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2057139538228512e-003</threshold>
- <left_val>0.0431881882250309</left_val>
- <right_val>-0.1845436990261078</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 4 18 -1.</_>
- <_>2 0 2 9 2.</_>
- <_>4 9 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0247570704668760</threshold>
- <left_val>0.6689097881317139</left_val>
- <right_val>-0.0344187095761299</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 6 8 -1.</_>
- <_>10 6 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0408669263124466e-003</threshold>
- <left_val>-0.1325615942478180</left_val>
- <right_val>0.0951310396194458</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 8 8 -1.</_>
- <_>5 2 4 4 2.</_>
- <_>9 6 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5181970084086061e-003</threshold>
- <left_val>0.1293949931859970</left_val>
- <right_val>-0.1855853945016861</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 20 10 3 -1.</_>
- <_>9 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0248453598469496</threshold>
- <left_val>-0.7301337718963623</left_val>
- <right_val>9.4545418396592140e-003</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 18 3 -1.</_>
- <_>6 0 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.1413304433226585e-003</threshold>
- <left_val>0.1152179986238480</left_val>
- <right_val>-0.1903814971446991</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 8 4 -1.</_>
- <_>10 0 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2350329458713531e-003</threshold>
- <left_val>0.0727336332201958</left_val>
- <right_val>-0.1084188967943192</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 8 4 -1.</_>
- <_>5 0 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.9135711789131165e-003</threshold>
- <left_val>-0.0842189565300941</left_val>
- <right_val>0.4761323928833008</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 20 10 3 -1.</_>
- <_>9 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7879870031028986e-003</threshold>
- <left_val>-0.1284693926572800</left_val>
- <right_val>0.0657206624746323</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 9 8 2 -1.</_>
- <_>9 9 8 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.6451589073985815e-003</threshold>
- <left_val>0.0892697572708130</left_val>
- <right_val>-0.2621667981147766</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 15 9 -1.</_>
- <_>9 7 5 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0266834907233715</threshold>
- <left_val>0.0898707732558250</left_val>
- <right_val>-0.0969140902161598</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 3 14 -1.</_>
- <_>9 8 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1197380740195513e-003</threshold>
- <left_val>-0.1173174008727074</left_val>
- <right_val>0.2200486063957214</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 12 16 -1.</_>
- <_>9 6 6 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2338829040527344</threshold>
- <left_val>-0.9090585708618164</left_val>
- <right_val>5.6871720589697361e-003</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 12 16 -1.</_>
- <_>4 6 6 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0109228203073144</threshold>
- <left_val>0.0850618407130241</left_val>
- <right_val>-0.3072564899921417</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 7 -1.</_>
- <_>10 6 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4858808442950249e-003</threshold>
- <left_val>-0.0223175697028637</left_val>
- <right_val>0.3374570906162262</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 15 5 6 -1.</_>
- <_>2 18 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1413412438705564e-004</threshold>
- <left_val>0.1486065983772278</left_val>
- <right_val>-0.1559835970401764</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 19 12 4 -1.</_>
- <_>11 19 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5561588853597641e-003</threshold>
- <left_val>0.0666934326291084</left_val>
- <right_val>-0.2994574010372162</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 19 12 4 -1.</_>
- <_>4 19 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.8293996416032314e-004</threshold>
- <left_val>-0.1992353945970535</left_val>
- <right_val>0.1481647938489914</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 9 4 7 -1.</_>
- <_>10 9 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8866109894588590e-003</threshold>
- <left_val>0.0864623710513115</left_val>
- <right_val>-0.1610174030065537</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 4 9 -1.</_>
- <_>7 9 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7264489326626062e-003</threshold>
- <left_val>-0.0820490866899490</left_val>
- <right_val>0.3867950141429901</right_val></_></_></trees>
- <stage_threshold>-0.8253865242004395</stage_threshold>
- <parent>16</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 18 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 4 17 -1.</_>
- <_>7 3 2 17 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0126025201752782</threshold>
- <left_val>0.2242307066917419</left_val>
- <right_val>-0.3346217870712280</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 21 14 2 -1.</_>
- <_>3 21 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5659699458628893e-003</threshold>
- <left_val>0.0857565402984619</left_val>
- <right_val>-0.3237636089324951</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 19 12 3 -1.</_>
- <_>6 19 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2003120500594378e-003</threshold>
- <left_val>0.1465037018060684</left_val>
- <right_val>-0.3030675053596497</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 3 22 -1.</_>
- <_>9 11 3 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7978968359529972e-003</threshold>
- <left_val>-0.2472590953111649</left_val>
- <right_val>0.0527058094739914</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 2 14 -1.</_>
- <_>6 9 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9380318270996213e-004</threshold>
- <left_val>-0.1888304948806763</left_val>
- <right_val>0.1549035012722015</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 6 16 -1.</_>
- <_>7 11 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.1017091870307922e-003</threshold>
- <left_val>0.1076487973332405</left_val>
- <right_val>-0.2473893016576767</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 4 8 -1.</_>
- <_>1 16 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8427261430770159e-004</threshold>
- <left_val>0.1828285008668900</left_val>
- <right_val>-0.1655009984970093</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 15 3 -1.</_>
- <_>7 12 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5279348269104958e-003</threshold>
- <left_val>-0.0556687600910664</left_val>
- <right_val>0.4138269126415253</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 12 6 -1.</_>
- <_>1 17 6 3 2.</_>
- <_>7 20 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8289420772343874e-003</threshold>
- <left_val>-0.2222221940755844</left_val>
- <right_val>0.1528232991695404</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 4 9 -1.</_>
- <_>8 0 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2229200266301632e-003</threshold>
- <left_val>-0.3235169053077698</left_val>
- <right_val>0.0683725476264954</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 4 9 -1.</_>
- <_>9 0 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1763478443026543e-003</threshold>
- <left_val>-0.3991226851940155</left_val>
- <right_val>0.0777074694633484</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 5 20 -1.</_>
- <_>7 6 5 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0878202617168427</threshold>
- <left_val>0.5857707858085632</left_val>
- <right_val>-0.0535846501588821</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 6 16 -1.</_>
- <_>3 7 2 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8017458543181419e-003</threshold>
- <left_val>-0.4330711066722870</left_val>
- <right_val>0.0626938492059708</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 4 10 -1.</_>
- <_>8 12 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0741569567471743e-003</threshold>
- <left_val>-0.1196649000048637</left_val>
- <right_val>0.0553978495299816</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 12 12 -1.</_>
- <_>5 7 4 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0304909199476242</threshold>
- <left_val>-0.2366324067115784</left_val>
- <right_val>0.1000299975275993</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 3 14 -1.</_>
- <_>9 6 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0518791191279888</threshold>
- <left_val>-0.0364188402891159</left_val>
- <right_val>0.7339289784431458</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 6 10 -1.</_>
- <_>2 6 3 5 2.</_>
- <_>5 11 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.6805049795657396e-004</threshold>
- <left_val>-0.1770547926425934</left_val>
- <right_val>0.1498523950576782</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 4 14 -1.</_>
- <_>9 6 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8424140550196171e-003</threshold>
- <left_val>-0.0462082512676716</left_val>
- <right_val>0.1316252946853638</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 18 12 -1.</_>
- <_>0 10 9 6 2.</_>
- <_>9 16 9 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.1674225404858589e-003</threshold>
- <left_val>0.0991810634732246</left_val>
- <right_val>-0.2029245048761368</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 4 14 -1.</_>
- <_>9 6 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6356228888034821e-003</threshold>
- <left_val>0.0878601670265198</left_val>
- <right_val>-0.0374380908906460</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 4 14 -1.</_>
- <_>8 6 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0383751504123211</threshold>
- <left_val>0.4972147941589356</left_val>
- <right_val>-0.0438151694834232</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 18 6 -1.</_>
- <_>1 15 9 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.9894384145736694e-003</threshold>
- <left_val>0.0941265523433685</left_val>
- <right_val>-0.3022775053977966</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 6 5 -1.</_>
- <_>4 17 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1650560190901160e-004</threshold>
- <left_val>0.1336105018854141</left_val>
- <right_val>-0.1893206983804703</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 17 12 6 -1.</_>
- <_>9 17 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6462112590670586e-004</threshold>
- <left_val>0.0779727026820183</left_val>
- <right_val>-0.1350826025009155</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 12 8 -1.</_>
- <_>4 15 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0126564903184772</threshold>
- <left_val>-0.3691301941871643</left_val>
- <right_val>0.0646138936281204</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 19 3 -1.</_>
- <_>0 8 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3929531238973141e-003</threshold>
- <left_val>0.2669681906700134</left_val>
- <right_val>-0.0886500999331474</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 16 3 -1.</_>
- <_>1 9 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2583639472723007e-003</threshold>
- <left_val>0.2061482965946198</left_val>
- <right_val>-0.1095243990421295</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 7 6 -1.</_>
- <_>6 8 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0111319404095411</threshold>
- <left_val>-0.4135204851627350</left_val>
- <right_val>0.0628401264548302</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 10 14 -1.</_>
- <_>4 7 5 7 2.</_>
- <_>9 14 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0703889206051826e-003</threshold>
- <left_val>-0.1559177935123444</left_val>
- <right_val>0.1501820981502533</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 12 10 -1.</_>
- <_>5 0 6 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5361549817025661e-003</threshold>
- <left_val>0.0625734925270081</left_val>
- <right_val>-0.2186996936798096</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 15 13 -1.</_>
- <_>7 0 5 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0288646295666695</threshold>
- <left_val>-0.0695617496967316</left_val>
- <right_val>0.4489277899265289</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 12 6 -1.</_>
- <_>8 6 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0710359066724777</threshold>
- <left_val>0.2099197953939438</left_val>
- <right_val>-0.0365628786385059</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 6 7 -1.</_>
- <_>4 16 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1107679456472397e-003</threshold>
- <left_val>-0.3302016854286194</left_val>
- <right_val>0.0797589421272278</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 8 8 -1.</_>
- <_>12 6 4 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0791840478777885</threshold>
- <left_val>-0.0132260099053383</left_val>
- <right_val>0.3860366046428680</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 7 6 -1.</_>
- <_>7 7 7 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0133535098284483</threshold>
- <left_val>0.0584105588495731</left_val>
- <right_val>-0.3925077021121979</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 18 3 -1.</_>
- <_>1 8 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0500490516424179</threshold>
- <left_val>-0.0233182292431593</left_val>
- <right_val>0.7459377050399780</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 9 11 -1.</_>
- <_>8 4 3 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2185900062322617</threshold>
- <left_val>-0.8458526730537415</left_val>
- <right_val>0.0259405300021172</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 6 7 -1.</_>
- <_>15 0 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0100641101598740</threshold>
- <left_val>-0.1095985025167465</left_val>
- <right_val>0.2106852978467941</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 11 12 6 -1.</_>
- <_>3 11 6 3 2.</_>
- <_>9 14 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5430879369378090e-003</threshold>
- <left_val>0.0535675399005413</left_val>
- <right_val>-0.3361727893352509</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 4 3 16 -1.</_>
- <_>14 4 1 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0158172100782394</threshold>
- <left_val>-0.0190422590821981</left_val>
- <right_val>0.2219689935445786</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 3 16 -1.</_>
- <_>4 4 1 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7135319649241865e-004</threshold>
- <left_val>0.1766736954450607</left_val>
- <right_val>-0.1206853017210960</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 16 8 -1.</_>
- <_>10 9 8 4 2.</_>
- <_>2 13 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6670849919319153e-003</threshold>
- <left_val>0.0700718387961388</left_val>
- <right_val>-0.2213760018348694</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 3 19 -1.</_>
- <_>4 0 1 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7946738991886377e-003</threshold>
- <left_val>-0.1050923019647598</left_val>
- <right_val>0.1927739977836609</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 8 10 -1.</_>
- <_>8 1 4 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5057970304042101e-003</threshold>
- <left_val>0.0600128881633282</left_val>
- <right_val>-0.1237851008772850</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 18 6 -1.</_>
- <_>6 14 6 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.5329543799161911e-003</threshold>
- <left_val>-0.0476112402975559</left_val>
- <right_val>0.3998514115810394</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 15 9 -1.</_>
- <_>9 9 5 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0429394692182541</threshold>
- <left_val>0.0316113904118538</left_val>
- <right_val>-0.1973166018724442</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 15 8 -1.</_>
- <_>5 14 5 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0203082207590342</threshold>
- <left_val>0.0350551903247833</left_val>
- <right_val>-0.5196939706802368</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 20 15 3 -1.</_>
- <_>8 20 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7673741616308689e-003</threshold>
- <left_val>-0.1881791949272156</left_val>
- <right_val>0.0568892285227776</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 18 2 -1.</_>
- <_>0 16 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1762759424746037e-003</threshold>
- <left_val>-0.0909481570124626</left_val>
- <right_val>0.2457586973905563</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 15 17 3 -1.</_>
- <_>2 16 17 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0198136903345585</threshold>
- <left_val>0.5290442109107971</left_val>
- <right_val>-0.0387549512088299</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 19 4 -1.</_>
- <_>0 2 19 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0130351595580578</threshold>
- <left_val>0.0679188221693039</left_val>
- <right_val>-0.3041346967220306</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 12 4 -1.</_>
- <_>4 2 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9664920400828123e-003</threshold>
- <left_val>-0.2062616944313049</left_val>
- <right_val>0.0961405932903290</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 3 21 -1.</_>
- <_>4 0 1 21 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6359891053289175e-003</threshold>
- <left_val>0.2508524954319000</left_val>
- <right_val>-0.0832009613513947</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 18 8 4 -1.</_>
- <_>6 20 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2968810517340899e-003</threshold>
- <left_val>0.2963468134403229</left_val>
- <right_val>-0.0587436892092228</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 14 3 -1.</_>
- <_>1 19 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8644939195364714e-003</threshold>
- <left_val>0.1941155046224594</left_val>
- <right_val>-0.1082755997776985</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 18 9 5 -1.</_>
- <_>12 18 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4517841160995886e-005</threshold>
- <left_val>-0.2445186972618103</left_val>
- <right_val>0.1029302999377251</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 19 3 -1.</_>
- <_>0 19 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9567341078072786e-003</threshold>
- <left_val>-0.1051924973726273</left_val>
- <right_val>0.2249999940395355</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 8 3 14 -1.</_>
- <_>14 8 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0141881098970771</threshold>
- <left_val>0.0321007184684277</left_val>
- <right_val>-0.5914242267608643</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 12 7 -1.</_>
- <_>5 6 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3274629600346088e-004</threshold>
- <left_val>0.0745778530836105</left_val>
- <right_val>-0.2765459120273590</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 16 16 -1.</_>
- <_>6 6 8 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0209963805973530</threshold>
- <left_val>-0.0457354895770550</left_val>
- <right_val>0.3294773101806641</right_val></_></_></trees>
- <stage_threshold>-0.8346493840217590</stage_threshold>
- <parent>17</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 19 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 16 20 -1.</_>
- <_>4 1 8 20 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0398410782217979</threshold>
- <left_val>0.1518651992082596</left_val>
- <right_val>-0.2905524969100952</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 9 4 14 -1.</_>
- <_>14 9 2 7 2.</_>
- <_>12 16 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1327869724482298e-003</threshold>
- <left_val>-0.1192163005471230</left_val>
- <right_val>0.1209888979792595</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 4 14 -1.</_>
- <_>3 9 2 7 2.</_>
- <_>5 16 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0022070491686463e-003</threshold>
- <left_val>0.1208863034844399</left_val>
- <right_val>-0.2562133073806763</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 11 6 10 -1.</_>
- <_>14 11 3 5 2.</_>
- <_>11 16 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0638662278652191</threshold>
- <left_val>0.0476281009614468</left_val>
- <right_val>-0.8615034818649292</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 6 10 -1.</_>
- <_>2 11 3 5 2.</_>
- <_>5 16 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0986019410192966e-003</threshold>
- <left_val>-0.3197580873966217</left_val>
- <right_val>0.0914346873760223</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 16 9 -1.</_>
- <_>6 8 8 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5784230828285217e-003</threshold>
- <left_val>-0.0804730504751205</left_val>
- <right_val>0.3612303137779236</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 17 10 6 -1.</_>
- <_>2 17 5 3 2.</_>
- <_>7 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5082601718604565e-003</threshold>
- <left_val>-0.1821575015783310</left_val>
- <right_val>0.1467249989509583</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 7 8 7 -1.</_>
- <_>13 9 4 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0165262408554554</threshold>
- <left_val>-0.1295465975999832</left_val>
- <right_val>0.0665224194526672</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 7 8 -1.</_>
- <_>6 9 7 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.1868099942803383e-003</threshold>
- <left_val>-0.2655260860919952</left_val>
- <right_val>0.1123768016695976</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 6 16 -1.</_>
- <_>7 11 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6613027118146420e-004</threshold>
- <left_val>0.1182264983654022</left_val>
- <right_val>-0.1611967980861664</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 4 10 -1.</_>
- <_>7 9 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0279800519347191e-003</threshold>
- <left_val>-0.2261843979358673</left_val>
- <right_val>0.1126369982957840</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 9 5 -1.</_>
- <_>8 0 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0119691500440240</threshold>
- <left_val>-0.2752344012260437</left_val>
- <right_val>0.0836038663983345</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 16 18 -1.</_>
- <_>5 1 8 18 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2841173112392426</threshold>
- <left_val>0.4021610915660858</left_val>
- <right_val>-0.0779717490077019</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 21 14 2 -1.</_>
- <_>5 21 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6587871145457029e-003</threshold>
- <left_val>-0.2972385883331299</left_val>
- <right_val>0.0634847134351730</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 20 18 3 -1.</_>
- <_>6 20 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.2046172358095646e-004</threshold>
- <left_val>0.0778728201985359</left_val>
- <right_val>-0.2953908145427704</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 9 3 14 -1.</_>
- <_>9 9 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0135717596858740</threshold>
- <left_val>-0.0724307671189308</left_val>
- <right_val>0.3484975099563599</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 13 2 -1.</_>
- <_>2 4 13 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.1399999279528856e-003</threshold>
- <left_val>-0.2208877950906754</left_val>
- <right_val>0.1007215976715088</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 10 16 -1.</_>
- <_>11 0 5 8 2.</_>
- <_>6 8 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9894008338451385e-003</threshold>
- <left_val>0.0591882094740868</left_val>
- <right_val>-0.1413722038269043</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 14 5 6 -1.</_>
- <_>2 17 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9609091840684414e-004</threshold>
- <left_val>0.1356392949819565</left_val>
- <right_val>-0.1508132964372635</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 8 4 8 -1.</_>
- <_>12 12 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6805849736556411e-003</threshold>
- <left_val>-0.0783482566475868</left_val>
- <right_val>0.0773573666810989</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 4 8 -1.</_>
- <_>3 12 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7250040117651224e-004</threshold>
- <left_val>0.2357279956340790</left_val>
- <right_val>-0.1159436032176018</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 6 3 10 -1.</_>
- <_>14 11 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0434741601347923</threshold>
- <left_val>8.2836961373686790e-003</left_val>
- <right_val>-0.3742831051349640</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 3 10 -1.</_>
- <_>2 11 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0316640883684158e-004</threshold>
- <left_val>-0.1784690022468567</left_val>
- <right_val>0.1618576049804688</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 12 16 -1.</_>
- <_>7 9 12 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0268817208707333</threshold>
- <left_val>0.0724194422364235</left_val>
- <right_val>-0.1797195971012116</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 11 4 9 -1.</_>
- <_>8 11 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0492738783359528</threshold>
- <left_val>0.4638639986515045</left_val>
- <right_val>-0.0502769388258457</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 18 10 5 -1.</_>
- <_>7 18 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0672252029180527</threshold>
- <left_val>-1.</left_val>
- <right_val>0.0135324001312256</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 11 14 -1.</_>
- <_>4 7 11 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2020377069711685</threshold>
- <left_val>-0.0387481003999710</left_val>
- <right_val>0.5721197724342346</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 9 15 -1.</_>
- <_>11 6 3 5 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0314897485077381</threshold>
- <left_val>0.0454889088869095</left_val>
- <right_val>-0.1253937035799027</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 5 8 -1.</_>
- <_>0 10 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7097017997875810e-004</threshold>
- <left_val>0.1961971074342728</left_val>
- <right_val>-0.1094473972916603</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 4 13 -1.</_>
- <_>15 0 2 13 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.8234989196062088e-003</threshold>
- <left_val>0.0679543614387512</left_val>
- <right_val>-0.0720759630203247</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 13 4 -1.</_>
- <_>4 0 13 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0215553902089596</threshold>
- <left_val>-0.2889066040515900</left_val>
- <right_val>0.0998060181736946</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 9 5 -1.</_>
- <_>9 3 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0837671980261803</threshold>
- <left_val>-0.4368507862091065</left_val>
- <right_val>0.0107926502823830</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 9 5 -1.</_>
- <_>7 3 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5752300173044205e-003</threshold>
- <left_val>0.1119166985154152</left_val>
- <right_val>-0.1946146041154862</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 12 4 -1.</_>
- <_>7 1 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0122654195874929</threshold>
- <left_val>-0.0657282173633575</left_val>
- <right_val>0.3273935914039612</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 6 12 -1.</_>
- <_>0 8 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8762801084667444e-003</threshold>
- <left_val>-0.1872380971908569</left_val>
- <right_val>0.1124698966741562</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 12 5 -1.</_>
- <_>5 0 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4190571904182434e-003</threshold>
- <left_val>0.0515259206295013</left_val>
- <right_val>-0.2661541998386383</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 14 5 -1.</_>
- <_>9 0 7 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.9716630019247532e-003</threshold>
- <left_val>0.1538427025079727</left_val>
- <right_val>-0.1514144986867905</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 4 14 -1.</_>
- <_>10 1 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0202948991209269</threshold>
- <left_val>-0.0195327997207642</left_val>
- <right_val>0.3057104945182800</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 9 8 -1.</_>
- <_>3 7 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0134690199047327</threshold>
- <left_val>0.0623453184962273</left_val>
- <right_val>-0.3634374141693115</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 16 9 -1.</_>
- <_>6 7 8 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8610929884016514e-003</threshold>
- <left_val>-0.0624873489141464</left_val>
- <right_val>0.2882091104984283</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 19 14 2 -1.</_>
- <_>7 19 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9594889171421528e-004</threshold>
- <left_val>0.0855377390980721</left_val>
- <right_val>-0.2408138066530228</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 20 10 3 -1.</_>
- <_>8 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0401498712599278</threshold>
- <left_val>-1.</left_val>
- <right_val>1.5480610309168696e-003</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 20 10 3 -1.</_>
- <_>6 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7885669842362404e-003</threshold>
- <left_val>-0.2233868986368179</left_val>
- <right_val>0.1100115999579430</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 8 3 10 -1.</_>
- <_>16 9 1 10 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.9318676143884659e-003</threshold>
- <left_val>0.1304326951503754</left_val>
- <right_val>-0.0288591794669628</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 21 16 2 -1.</_>
- <_>8 21 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9607459509861656e-005</threshold>
- <left_val>0.1187603995203972</left_val>
- <right_val>-0.1701882034540176</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 15 3 -1.</_>
- <_>4 7 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6092668995261192e-003</threshold>
- <left_val>-0.0698777809739113</left_val>
- <right_val>0.1503650993108749</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 3 14 -1.</_>
- <_>7 4 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0459702089428902</threshold>
- <left_val>0.5632215142250061</left_val>
- <right_val>-0.0363181307911873</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 18 10 5 -1.</_>
- <_>7 18 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.0047682169824839e-004</threshold>
- <left_val>0.0324610583484173</left_val>
- <right_val>-0.1897388994693756</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 18 10 5 -1.</_>
- <_>7 18 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0517124086618423</threshold>
- <left_val>-0.8504551053047180</left_val>
- <right_val>0.0206797402352095</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 10 16 -1.</_>
- <_>11 0 5 8 2.</_>
- <_>6 8 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1417240947484970</threshold>
- <left_val>-0.9100450873374939</left_val>
- <right_val>3.8531969767063856e-003</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 10 16 -1.</_>
- <_>3 0 5 8 2.</_>
- <_>8 8 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0697711929678917</threshold>
- <left_val>0.4214478135108948</left_val>
- <right_val>-0.0551622696220875</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 7 4 -1.</_>
- <_>6 2 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5836889445781708e-003</threshold>
- <left_val>-0.4218929111957550</left_val>
- <right_val>0.0619645304977894</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 19 3 -1.</_>
- <_>0 3 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2404819717630744e-003</threshold>
- <left_val>0.1755862981081009</left_val>
- <right_val>-0.1354064047336578</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 12 4 -1.</_>
- <_>7 2 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0106146996840835</threshold>
- <left_val>0.0450832396745682</left_val>
- <right_val>-0.2576557099819183</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 15 3 -1.</_>
- <_>0 3 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7647630302235484e-003</threshold>
- <left_val>-0.1100924983620644</left_val>
- <right_val>0.2404121011495590</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 18 3 -1.</_>
- <_>1 6 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7170480936765671e-003</threshold>
- <left_val>-0.0769208222627640</left_val>
- <right_val>0.2011951953172684</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 12 6 -1.</_>
- <_>3 2 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0152806797996163</threshold>
- <left_val>0.0586051195859909</left_val>
- <right_val>-0.3622012138366699</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 10 10 -1.</_>
- <_>5 5 10 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0816356167197227</threshold>
- <left_val>0.5281978845596314</left_val>
- <right_val>-0.0436089709401131</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 9 4 -1.</_>
- <_>5 3 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4431939236819744e-003</threshold>
- <left_val>-0.2436936050653458</left_val>
- <right_val>0.0843842774629593</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 12 6 -1.</_>
- <_>5 4 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2289900332689285e-003</threshold>
- <left_val>0.1033272966742516</left_val>
- <right_val>-0.0974423289299011</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 9 6 -1.</_>
- <_>1 17 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9271848769858479e-004</threshold>
- <left_val>-0.1136775016784668</left_val>
- <right_val>0.1612184941768646</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 13 14 9 -1.</_>
- <_>5 16 14 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.9380649626255035e-003</threshold>
- <left_val>0.0527746789157391</left_val>
- <right_val>-0.1522282063961029</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 8 3 -1.</_>
- <_>7 13 8 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0183777492493391</threshold>
- <left_val>0.4680078923702240</left_val>
- <right_val>-0.0424112305045128</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 8 2 15 -1.</_>
- <_>12 8 1 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0569550581276417e-003</threshold>
- <left_val>0.1286662966012955</left_val>
- <right_val>-0.0983085632324219</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 2 15 -1.</_>
- <_>6 8 1 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8440110143274069e-003</threshold>
- <left_val>-0.2759248912334442</left_val>
- <right_val>0.1005029976367950</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 3 14 -1.</_>
- <_>12 5 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6205368600785732e-003</threshold>
- <left_val>-0.0707162171602249</left_val>
- <right_val>0.1673406958580017</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 2 14 -1.</_>
- <_>6 8 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4157470799982548e-003</threshold>
- <left_val>0.0523780882358551</left_val>
- <right_val>-0.5098274946212769</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 3 14 -1.</_>
- <_>12 6 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0376210343092680e-003</threshold>
- <left_val>0.1424362957477570</left_val>
- <right_val>-0.0630370602011681</right_val></_></_></trees>
- <stage_threshold>-0.7035266757011414</stage_threshold>
- <parent>18</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 20 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 8 22 -1.</_>
- <_>0 0 4 11 2.</_>
- <_>4 11 4 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0101266400888562</threshold>
- <left_val>-0.2186378985643387</left_val>
- <right_val>0.1751348972320557</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 10 4 8 -1.</_>
- <_>13 10 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6893198955804110e-003</threshold>
- <left_val>-0.3282296955585480</left_val>
- <right_val>0.0998382568359375</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 13 16 7 -1.</_>
- <_>5 13 8 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0155735304579139</threshold>
- <left_val>0.1959401965141296</left_val>
- <right_val>-0.2253597974777222</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 10 4 8 -1.</_>
- <_>13 10 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9326270818710327e-003</threshold>
- <left_val>0.0499884709715843</left_val>
- <right_val>-0.5317537784576416</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 10 4 8 -1.</_>
- <_>4 10 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6638202881440520e-004</threshold>
- <left_val>-0.2692666947841644</left_val>
- <right_val>0.1175142973661423</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 10 6 -1.</_>
- <_>10 7 5 3 2.</_>
- <_>5 10 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2552300177048892e-004</threshold>
- <left_val>0.0691107884049416</left_val>
- <right_val>-0.0817273929715157</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 19 8 4 -1.</_>
- <_>4 19 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4519299838866573e-005</threshold>
- <left_val>0.1148395016789436</left_val>
- <right_val>-0.2301712930202484</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 15 3 -1.</_>
- <_>3 16 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0161138400435448</threshold>
- <left_val>0.5095658898353577</left_val>
- <right_val>-0.0374940298497677</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 4 16 -1.</_>
- <_>7 2 2 8 2.</_>
- <_>9 10 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5138790048658848e-003</threshold>
- <left_val>-0.0787875503301620</left_val>
- <right_val>0.2377143949270248</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 4 12 -1.</_>
- <_>8 10 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0877638235688210</threshold>
- <left_val>0.0138639798387885</left_val>
- <right_val>-0.8977738022804260</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 4 12 -1.</_>
- <_>7 10 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0128255700692534</threshold>
- <left_val>-0.3950499892234802</left_val>
- <right_val>0.0555463284254074</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 14 2 -1.</_>
- <_>3 16 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2099979044869542e-004</threshold>
- <left_val>-0.1266397982835770</left_val>
- <right_val>0.1908162981271744</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 17 8 -1.</_>
- <_>0 17 17 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2775770155712962e-003</threshold>
- <left_val>0.1106508001685143</left_val>
- <right_val>-0.1980109959840775</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 3 9 10 -1.</_>
- <_>10 3 9 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.2522971928119659</threshold>
- <left_val>-0.8103982806205750</left_val>
- <right_val>8.3870543166995049e-003</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 4 10 -1.</_>
- <_>7 13 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0347747532650828e-004</threshold>
- <left_val>-0.2138054966926575</left_val>
- <right_val>0.0986735969781876</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 7 15 -1.</_>
- <_>7 13 7 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0107174804434180</threshold>
- <left_val>0.0844704434275627</left_val>
- <right_val>-0.2606374919414520</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 16 20 -1.</_>
- <_>5 0 8 20 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1081487908959389e-003</threshold>
- <left_val>-0.0557322204113007</left_val>
- <right_val>0.4144786000251770</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 18 9 5 -1.</_>
- <_>12 18 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0190061591565609</threshold>
- <left_val>-0.3747524917125702</left_val>
- <right_val>7.9524833709001541e-003</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 9 5 -1.</_>
- <_>4 18 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1136929970234632e-003</threshold>
- <left_val>-0.2265014946460724</left_val>
- <right_val>0.1078938990831375</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 8 12 -1.</_>
- <_>12 7 4 6 2.</_>
- <_>8 13 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0111417695879936</threshold>
- <left_val>-0.0420547984540462</left_val>
- <right_val>0.1369771063327789</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 4 13 -1.</_>
- <_>4 9 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2054879916831851e-003</threshold>
- <left_val>0.0921059772372246</left_val>
- <right_val>-0.2308367937803268</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 14 7 4 -1.</_>
- <_>12 16 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0797130127903074e-004</threshold>
- <left_val>0.0842105969786644</left_val>
- <right_val>-0.0669676810503006</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 18 3 -1.</_>
- <_>0 7 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0164126493036747</threshold>
- <left_val>0.4226919114589691</left_val>
- <right_val>-0.0496386997401714</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 18 7 -1.</_>
- <_>1 16 9 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0363390259444714e-003</threshold>
- <left_val>0.0905506610870361</left_val>
- <right_val>-0.2732287049293518</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 15 5 -1.</_>
- <_>5 18 5 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.4774550050497055e-003</threshold>
- <left_val>-0.1900486946105957</left_val>
- <right_val>0.1041653975844383</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 4 8 -1.</_>
- <_>10 5 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0877996310591698</threshold>
- <left_val>-1.</left_val>
- <right_val>4.5551471412181854e-003</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 4 8 -1.</_>
- <_>7 5 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0467311106622219</threshold>
- <left_val>0.4160776138305664</left_val>
- <right_val>-0.0679246112704277</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 6 5 -1.</_>
- <_>7 0 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4915830045938492e-003</threshold>
- <left_val>0.0475161895155907</left_val>
- <right_val>-0.4430620074272156</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 2 15 -1.</_>
- <_>7 2 1 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.6966790258884430e-003</threshold>
- <left_val>-0.0394231490790844</left_val>
- <right_val>0.5218827724456787</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 12 4 -1.</_>
- <_>4 0 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.4137862063944340e-003</threshold>
- <left_val>-0.2474942952394486</left_val>
- <right_val>0.1135025024414063</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 2 14 -1.</_>
- <_>5 7 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4909840002655983e-003</threshold>
- <left_val>-0.2023759037256241</left_val>
- <right_val>0.1188730970025063</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 14 4 -1.</_>
- <_>5 17 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1677639558911324e-003</threshold>
- <left_val>-0.0981874391436577</left_val>
- <right_val>0.1447045952081680</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 2 14 -1.</_>
- <_>3 9 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.0650653690099716e-003</threshold>
- <left_val>0.0308064296841621</left_val>
- <right_val>-0.5741053819656372</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 4 7 -1.</_>
- <_>12 0 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1450549401342869e-003</threshold>
- <left_val>0.1421328037977219</left_val>
- <right_val>-0.1215547993779182</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 4 7 -1.</_>
- <_>5 0 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3926900941878557e-003</threshold>
- <left_val>-0.0694254636764526</left_val>
- <right_val>0.3794550001621246</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 9 15 -1.</_>
- <_>11 5 3 5 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2586125135421753</threshold>
- <left_val>-8.0964984372258186e-003</left_val>
- <right_val>0.5732439160346985</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 9 15 -1.</_>
- <_>5 5 3 5 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0463276505470276</threshold>
- <left_val>0.0934282690286636</left_val>
- <right_val>-0.2927432060241699</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>16 5 2 16 -1.</_>
- <_>16 5 1 16 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.4053919585421681e-005</threshold>
- <left_val>0.0595843009650707</left_val>
- <right_val>-0.1219384968280792</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 16 2 -1.</_>
- <_>3 5 16 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.5521689355373383e-003</threshold>
- <left_val>-0.3026813864707947</left_val>
- <right_val>0.0794819965958595</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 11 6 9 -1.</_>
- <_>11 11 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0719741806387901</threshold>
- <left_val>0.5986248850822449</left_val>
- <right_val>-0.0324142388999462</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 8 4 -1.</_>
- <_>7 6 4 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.1097419774159789e-003</threshold>
- <left_val>-0.2228900045156479</left_val>
- <right_val>0.0948095768690109</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 8 8 -1.</_>
- <_>14 0 4 4 2.</_>
- <_>10 4 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0110122803598642</threshold>
- <left_val>-0.0509547106921673</left_val>
- <right_val>0.2199670970439911</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 12 4 -1.</_>
- <_>7 0 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1066353023052216</threshold>
- <left_val>-0.7825710773468018</left_val>
- <right_val>0.0230757091194391</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 11 6 9 -1.</_>
- <_>11 11 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0268266107887030</threshold>
- <left_val>-0.0333343781530857</left_val>
- <right_val>0.3282557129859924</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 4 10 -1.</_>
- <_>5 10 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0164807792752981</threshold>
- <left_val>0.0247930791229010</left_val>
- <right_val>-0.7910236716270447</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 12 6 5 -1.</_>
- <_>11 12 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4533529756590724e-003</threshold>
- <left_val>-0.0473778210580349</left_val>
- <right_val>0.1829988956451416</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 11 6 9 -1.</_>
- <_>6 11 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0465367212891579</threshold>
- <left_val>-0.0422177799046040</left_val>
- <right_val>0.4720196127891541</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 12 7 4 -1.</_>
- <_>12 12 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0136040495708585</threshold>
- <left_val>0.0715431720018387</left_val>
- <right_val>-0.2817555963993073</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 8 8 -1.</_>
- <_>1 0 4 4 2.</_>
- <_>5 4 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9868748970329762e-003</threshold>
- <left_val>-0.1201931983232498</left_val>
- <right_val>0.1516525000333786</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 9 10 -1.</_>
- <_>10 4 9 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0754555836319923</threshold>
- <left_val>7.6729329302906990e-003</left_val>
- <right_val>-0.3756060004234314</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 12 8 -1.</_>
- <_>1 1 6 4 2.</_>
- <_>7 5 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1207109093666077e-003</threshold>
- <left_val>0.1162438988685608</left_val>
- <right_val>-0.1518730968236923</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 14 16 2 -1.</_>
- <_>2 14 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6092201955616474e-003</threshold>
- <left_val>0.0523151606321335</left_val>
- <right_val>-0.2305060029029846</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 4 14 -1.</_>
- <_>8 3 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0207670275121927e-003</threshold>
- <left_val>-0.1138001009821892</left_val>
- <right_val>0.1762644052505493</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 6 7 -1.</_>
- <_>9 1 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2532532028853893e-003</threshold>
- <left_val>0.0616743601858616</left_val>
- <right_val>-0.3491523861885071</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 4 12 -1.</_>
- <_>3 14 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0283224005252123</threshold>
- <left_val>-0.0399581491947174</left_val>
- <right_val>0.5239297747612000</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 6 7 -1.</_>
- <_>10 4 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0163423605263233</threshold>
- <left_val>-0.1256355941295624</left_val>
- <right_val>0.0400417409837246</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 6 7 -1.</_>
- <_>7 4 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8282469827681780e-003</threshold>
- <left_val>0.0911350324749947</left_val>
- <right_val>-0.1922471970319748</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 14 8 -1.</_>
- <_>5 7 7 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0446169190108776</threshold>
- <left_val>-0.0175829101353884</left_val>
- <right_val>0.3028193116188049</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 6 5 -1.</_>
- <_>5 12 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5677649429999292e-004</threshold>
- <left_val>-0.0878974124789238</left_val>
- <right_val>0.2233915030956268</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 9 4 7 -1.</_>
- <_>12 9 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5413200859911740e-004</threshold>
- <left_val>0.0655228272080421</left_val>
- <right_val>-0.0996793806552887</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 4 7 -1.</_>
- <_>5 9 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5353029593825340e-003</threshold>
- <left_val>0.0685900002717972</left_val>
- <right_val>-0.2972837090492249</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 2 4 12 -1.</_>
- <_>13 6 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1600390318781137e-003</threshold>
- <left_val>-0.0897365286946297</left_val>
- <right_val>0.0802845433354378</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 4 12 -1.</_>
- <_>2 6 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9745612088590860e-004</threshold>
- <left_val>0.2187386006116867</left_val>
- <right_val>-0.1139852032065392</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 16 8 -1.</_>
- <_>10 2 8 4 2.</_>
- <_>2 6 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0123560503125191</threshold>
- <left_val>-0.2935076057910919</left_val>
- <right_val>0.0644203200936317</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 15 9 -1.</_>
- <_>7 5 5 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3267093002796173</threshold>
- <left_val>0.3892014920711517</left_val>
- <right_val>-0.0491654090583324</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 3 12 -1.</_>
- <_>8 13 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7828626856207848e-003</threshold>
- <left_val>0.0861861929297447</left_val>
- <right_val>-0.2263184934854507</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 3 15 -1.</_>
- <_>3 0 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3569689840078354e-003</threshold>
- <left_val>-0.0911942869424820</left_val>
- <right_val>0.2126410007476807</right_val></_></_></trees>
- <stage_threshold>-0.7464476823806763</stage_threshold>
- <parent>19</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 21 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 16 4 -1.</_>
- <_>5 8 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0152904996648431</threshold>
- <left_val>0.1601132005453110</left_val>
- <right_val>-0.2151194065809250</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 8 8 -1.</_>
- <_>10 0 4 4 2.</_>
- <_>6 4 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9956451877951622e-003</threshold>
- <left_val>-0.1829978972673416</left_val>
- <right_val>0.0378865003585815</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 9 2 14 -1.</_>
- <_>9 9 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2301359139382839e-004</threshold>
- <left_val>-0.1219919994473457</left_val>
- <right_val>0.2116325050592423</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 3 10 -1.</_>
- <_>8 10 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8087380602955818e-004</threshold>
- <left_val>-0.2274738997220993</left_val>
- <right_val>0.0769580379128456</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 9 3 14 -1.</_>
- <_>9 9 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8277048841118813e-003</threshold>
- <left_val>0.2759746015071869</left_val>
- <right_val>-0.0789423063397408</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 12 16 -1.</_>
- <_>6 11 12 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0210963208228350</threshold>
- <left_val>0.0412959195673466</left_val>
- <right_val>-0.3293308019638062</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 3 16 -1.</_>
- <_>5 0 1 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2117430344223976e-003</threshold>
- <left_val>0.2467256933450699</left_val>
- <right_val>-0.0731216669082642</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 9 4 11 -1.</_>
- <_>13 9 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3275949060916901e-003</threshold>
- <left_val>-0.2282510995864868</left_val>
- <right_val>0.0792851969599724</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 14 3 -1.</_>
- <_>7 18 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4754869304597378e-003</threshold>
- <left_val>0.1174404993653297</left_val>
- <right_val>-0.1980140954256058</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 12 11 -1.</_>
- <_>9 9 6 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5716619566082954e-003</threshold>
- <left_val>0.0376587100327015</left_val>
- <right_val>-0.1214805990457535</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 16 9 -1.</_>
- <_>5 7 8 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5387970488518476e-003</threshold>
- <left_val>-0.0559732504189014</left_val>
- <right_val>0.3692342936992645</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 4 7 -1.</_>
- <_>11 6 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0330665186047554</threshold>
- <left_val>0.3916000127792358</left_val>
- <right_val>-0.0778629407286644</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 11 12 12 -1.</_>
- <_>7 15 4 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0857277214527130</threshold>
- <left_val>-0.2517474889755249</left_val>
- <right_val>0.1354355067014694</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 4 7 -1.</_>
- <_>11 6 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0333289913833141e-003</threshold>
- <left_val>0.1332871019840241</left_val>
- <right_val>-0.1566464006900787</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 6 10 -1.</_>
- <_>6 0 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8310517235659063e-005</threshold>
- <left_val>0.0994542017579079</left_val>
- <right_val>-0.2341298013925552</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 9 2 14 -1.</_>
- <_>13 9 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0546118766069412e-004</threshold>
- <left_val>-0.1774266958236694</left_val>
- <right_val>0.1001781001687050</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 2 14 -1.</_>
- <_>5 9 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2480569314211607e-003</threshold>
- <left_val>-0.3642463982105255</left_val>
- <right_val>0.0535012595355511</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 6 16 -1.</_>
- <_>7 11 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5090550296008587e-003</threshold>
- <left_val>0.0775750502943993</left_val>
- <right_val>-0.0949207171797752</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 4 7 -1.</_>
- <_>4 16 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8666180848376825e-005</threshold>
- <left_val>0.1258593946695328</left_val>
- <right_val>-0.1452981978654862</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 17 9 6 -1.</_>
- <_>12 17 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5532109905034304e-003</threshold>
- <left_val>-0.0986266136169434</left_val>
- <right_val>0.0743262469768524</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 6 7 -1.</_>
- <_>4 16 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4601859729737043e-003</threshold>
- <left_val>-0.3302684128284454</left_val>
- <right_val>0.0638134628534317</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 13 5 6 -1.</_>
- <_>14 16 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3586049792356789e-004</threshold>
- <left_val>0.1084676012396812</left_val>
- <right_val>-0.1057104989886284</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 12 6 -1.</_>
- <_>6 0 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0147560602054000</threshold>
- <left_val>-0.0594728402793407</left_val>
- <right_val>0.3779289126396179</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 14 7 -1.</_>
- <_>4 0 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1679531037807465</threshold>
- <left_val>-0.6677346825599670</left_val>
- <right_val>0.0174049306660891</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 9 22 -1.</_>
- <_>5 11 9 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0320176705718040</threshold>
- <left_val>-0.2372045069932938</left_val>
- <right_val>0.0962059274315834</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 8 8 4 -1.</_>
- <_>11 10 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1111792456358671e-004</threshold>
- <left_val>0.1356689035892487</left_val>
- <right_val>-0.0681219324469566</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 4 8 -1.</_>
- <_>9 0 2 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0115860402584076</threshold>
- <left_val>-0.2976146042346954</left_val>
- <right_val>0.0648532509803772</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 17 14 2 -1.</_>
- <_>5 18 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1290679685771465e-003</threshold>
- <left_val>0.1352047026157379</left_val>
- <right_val>-0.0906935036182404</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 14 3 -1.</_>
- <_>1 18 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8352170009166002e-003</threshold>
- <left_val>-0.0966946035623550</left_val>
- <right_val>0.1872598975896835</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 12 12 -1.</_>
- <_>10 5 4 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2758424878120422</threshold>
- <left_val>0.2746022045612335</left_val>
- <right_val>-0.0161767099052668</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 12 12 -1.</_>
- <_>5 5 4 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0524872802197933</threshold>
- <left_val>-0.2629503011703491</left_val>
- <right_val>0.0842792764306068</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 7 18 -1.</_>
- <_>6 9 7 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0284090805798769</threshold>
- <left_val>0.4403317868709564</left_val>
- <right_val>-0.0467363409698009</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 12 9 -1.</_>
- <_>3 0 6 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0122342295944691</threshold>
- <left_val>0.0713919028639793</left_val>
- <right_val>-0.2946347892284393</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 9 3 14 -1.</_>
- <_>10 9 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0377520881593227</threshold>
- <left_val>-0.0325071401894093</left_val>
- <right_val>0.6229391098022461</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 5 9 -1.</_>
- <_>7 8 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0130063397809863</threshold>
- <left_val>-0.3561950922012329</left_val>
- <right_val>0.0570859201252460</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 9 3 14 -1.</_>
- <_>10 9 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7061918992549181e-003</threshold>
- <left_val>0.1748504936695099</left_val>
- <right_val>-0.1050686985254288</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 3 14 -1.</_>
- <_>8 9 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8177209682762623e-003</threshold>
- <left_val>0.1476109027862549</left_val>
- <right_val>-0.1370013058185577</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 10 5 8 -1.</_>
- <_>12 10 5 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0307267196476460</threshold>
- <left_val>-0.2143260985612869</left_val>
- <right_val>0.0345353297889233</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 10 7 -1.</_>
- <_>8 6 5 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0100443996489048</threshold>
- <left_val>0.0824728682637215</left_val>
- <right_val>-0.2132944017648697</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 15 7 4 -1.</_>
- <_>12 17 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3808979787863791e-004</threshold>
- <left_val>-0.0563683994114399</left_val>
- <right_val>0.0840506926178932</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 7 4 -1.</_>
- <_>0 17 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4935539588332176e-004</threshold>
- <left_val>0.1551014035940170</left_val>
- <right_val>-0.1546518951654434</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 6 2 16 -1.</_>
- <_>15 6 1 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.5416442016139627e-004</threshold>
- <left_val>0.0748112127184868</left_val>
- <right_val>-0.2076193988323212</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 4 8 -1.</_>
- <_>3 13 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4278831016272306e-004</threshold>
- <left_val>0.2069537043571472</left_val>
- <right_val>-0.1131504029035568</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 19 3 -1.</_>
- <_>0 15 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0418039113283157</threshold>
- <left_val>0.7737541794776917</left_val>
- <right_val>-0.0273915994912386</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 4 7 -1.</_>
- <_>3 12 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9303712593391538e-004</threshold>
- <left_val>-0.2892684936523438</left_val>
- <right_val>0.0834253132343292</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 12 4 11 -1.</_>
- <_>14 12 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0034189801663160e-003</threshold>
- <left_val>0.0578995198011398</left_val>
- <right_val>-0.2181786000728607</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 5 6 -1.</_>
- <_>0 11 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4933562427759171e-004</threshold>
- <left_val>-0.1360622048377991</left_val>
- <right_val>0.1615003049373627</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 14 3 -1.</_>
- <_>4 0 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0896454229950905</threshold>
- <left_val>-0.9571774005889893</left_val>
- <right_val>5.8882208541035652e-003</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 14 3 -1.</_>
- <_>8 0 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.5244808793067932e-003</threshold>
- <left_val>0.1452196985483170</left_val>
- <right_val>-0.1611984968185425</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 3 7 4 -1.</_>
- <_>12 5 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8723690193146467e-003</threshold>
- <left_val>0.1067081019282341</left_val>
- <right_val>-0.0305057391524315</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 7 4 -1.</_>
- <_>0 5 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2762219887226820e-003</threshold>
- <left_val>-0.1457338035106659</left_val>
- <right_val>0.1559064984321594</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 8 4 7 -1.</_>
- <_>10 8 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3706637807190418e-003</threshold>
- <left_val>-0.0243692994117737</left_val>
- <right_val>0.2072412967681885</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 4 11 -1.</_>
- <_>3 12 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1989739723503590e-003</threshold>
- <left_val>0.0884619429707527</left_val>
- <right_val>-0.2253641039133072</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 10 16 4 -1.</_>
- <_>2 11 16 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1923090834170580e-004</threshold>
- <left_val>0.1510809063911438</left_val>
- <right_val>-0.0991063416004181</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 11 9 3 -1.</_>
- <_>6 12 9 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.0555429616943002e-003</threshold>
- <left_val>0.1539929956197739</left_val>
- <right_val>-0.1441050022840500</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 12 16 -1.</_>
- <_>8 6 6 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0231018904596567</threshold>
- <left_val>-0.0261075291782618</left_val>
- <right_val>0.2587516903877258</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 14 4 -1.</_>
- <_>2 6 7 2 2.</_>
- <_>9 8 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7337458021938801e-003</threshold>
- <left_val>0.0646296367049217</left_val>
- <right_val>-0.3229981958866119</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 10 6 -1.</_>
- <_>10 6 5 3 2.</_>
- <_>5 9 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4084229478612542e-003</threshold>
- <left_val>0.0857550725340843</left_val>
- <right_val>-0.1494754999876022</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 2 14 -1.</_>
- <_>1 9 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3923629487399012e-004</threshold>
- <left_val>0.1870089024305344</left_val>
- <right_val>-0.1094153001904488</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 18 9 5 -1.</_>
- <_>13 18 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2198690567165613e-004</threshold>
- <left_val>-0.1951756030321121</left_val>
- <right_val>0.0595878586173058</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 10 3 -1.</_>
- <_>3 10 10 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.8156230691820383e-003</threshold>
- <left_val>-0.0895278826355934</left_val>
- <right_val>0.2289431989192963</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 18 9 5 -1.</_>
- <_>13 18 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8730508685112000e-003</threshold>
- <left_val>0.0641397014260292</left_val>
- <right_val>-0.1717485934495926</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 9 5 -1.</_>
- <_>3 18 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0448540560901165e-003</threshold>
- <left_val>-0.2092723995447159</left_val>
- <right_val>0.1102280989289284</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 12 9 -1.</_>
- <_>9 8 4 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1804109960794449</threshold>
- <left_val>0.2546054124832153</left_val>
- <right_val>-0.0315802395343781</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 12 9 -1.</_>
- <_>6 8 4 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1891681998968124</threshold>
- <left_val>-0.8143904805183411</left_val>
- <right_val>0.0302127506583929</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 4 14 -1.</_>
- <_>10 6 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0489343404769897</threshold>
- <left_val>0.4832926988601685</left_val>
- <right_val>-0.0318133905529976</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 20 15 3 -1.</_>
- <_>7 20 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2278551049530506e-003</threshold>
- <left_val>-0.2246308028697968</left_val>
- <right_val>0.0932022929191589</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 9 5 -1.</_>
- <_>8 4 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6263489164412022e-003</threshold>
- <left_val>0.0972399637103081</left_val>
- <right_val>-0.2209493964910507</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 4 14 -1.</_>
- <_>7 6 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0206885300576687</threshold>
- <left_val>-0.0390446893870831</left_val>
- <right_val>0.6966891884803772</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 2 14 -1.</_>
- <_>10 0 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.5703191794455051e-003</threshold>
- <left_val>-0.1591935008764267</left_val>
- <right_val>0.0376973897218704</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 2 14 -1.</_>
- <_>8 0 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7691440191119909e-003</threshold>
- <left_val>-0.2177779972553253</left_val>
- <right_val>0.1107555031776428</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 4 8 -1.</_>
- <_>12 0 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5391899980604649e-003</threshold>
- <left_val>0.0767533034086227</left_val>
- <right_val>-0.1212102025747299</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 14 3 -1.</_>
- <_>0 4 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0145228998735547</threshold>
- <left_val>-0.0469354689121246</left_val>
- <right_val>0.4432204961776733</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 20 10 3 -1.</_>
- <_>5 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8549640923738480e-003</threshold>
- <left_val>-0.4104030132293701</left_val>
- <right_val>0.0472962893545628</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 18 7 4 -1.</_>
- <_>6 20 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6202149931341410e-003</threshold>
- <left_val>0.3670789897441864</left_val>
- <right_val>-0.0505831092596054</right_val></_></_></trees>
- <stage_threshold>-0.7803025245666504</stage_threshold>
- <parent>20</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 22 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 6 9 -1.</_>
- <_>5 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.7794737666845322e-003</threshold>
- <left_val>-0.1987376958131790</left_val>
- <right_val>0.1875499039888382</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 6 7 -1.</_>
- <_>15 0 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5764610618352890e-003</threshold>
- <left_val>-0.1654404997825623</left_val>
- <right_val>0.1196829974651337</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 13 4 10 -1.</_>
- <_>5 13 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6844018874689937e-004</threshold>
- <left_val>0.0811874270439148</left_val>
- <right_val>-0.2695421874523163</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 12 4 10 -1.</_>
- <_>12 12 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8919180147349834e-003</threshold>
- <left_val>0.0823986902832985</left_val>
- <right_val>-0.1956467032432556</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 4 7 -1.</_>
- <_>5 12 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2977651618421078e-004</threshold>
- <left_val>-0.2138116955757141</left_val>
- <right_val>0.1015295982360840</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 6 14 -1.</_>
- <_>15 0 2 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5124829262495041e-003</threshold>
- <left_val>0.2649702131748200</left_val>
- <right_val>-0.0817281305789948</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 6 12 -1.</_>
- <_>2 0 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9220919609069824e-003</threshold>
- <left_val>-0.1383789926767349</left_val>
- <right_val>0.1704742014408112</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 19 14 4 -1.</_>
- <_>12 19 7 2 2.</_>
- <_>5 21 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5432259533554316e-003</threshold>
- <left_val>-0.2348349988460541</left_val>
- <right_val>0.1262467950582504</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 9 10 -1.</_>
- <_>0 17 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5272549875080585e-003</threshold>
- <left_val>-0.2190258055925369</left_val>
- <right_val>0.0782149434089661</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 13 5 6 -1.</_>
- <_>14 16 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2087319414131343e-004</threshold>
- <left_val>0.0998033136129379</left_val>
- <right_val>-0.1005263030529022</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 8 4 -1.</_>
- <_>0 18 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6291592773050070e-004</threshold>
- <left_val>0.1458780020475388</left_val>
- <right_val>-0.1319447010755539</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 16 3 -1.</_>
- <_>3 17 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0342483595013618</threshold>
- <left_val>0.7317953109741211</left_val>
- <right_val>-0.0257543697953224</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 6 7 -1.</_>
- <_>8 0 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5207060649991035e-003</threshold>
- <left_val>0.0738294273614883</left_val>
- <right_val>-0.2461594045162201</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 16 5 -1.</_>
- <_>6 0 8 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0336631610989571</threshold>
- <left_val>-0.0507508292794228</left_val>
- <right_val>0.5105447769165039</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 17 10 -1.</_>
- <_>0 5 17 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0106051396578550</threshold>
- <left_val>-0.1959338039159775</left_val>
- <right_val>0.0961627289652824</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 3 15 -1.</_>
- <_>9 1 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6454470828175545e-003</threshold>
- <left_val>-0.1027477011084557</left_val>
- <right_val>0.1802129000425339</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 8 20 -1.</_>
- <_>0 7 8 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0316587202250957</threshold>
- <left_val>0.0774153470993042</left_val>
- <right_val>-0.2349832057952881</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 4 10 -1.</_>
- <_>8 12 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0604964494705200</threshold>
- <left_val>7.9810861498117447e-003</left_val>
- <right_val>-0.5812633037567139</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 4 10 -1.</_>
- <_>7 12 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1451190696097910e-004</threshold>
- <left_val>-0.2714141011238098</left_val>
- <right_val>0.0724482312798500</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 3 17 -1.</_>
- <_>12 0 1 17 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9069753885269165e-003</threshold>
- <left_val>0.1086466014385223</left_val>
- <right_val>-0.0378909781575203</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 3 17 -1.</_>
- <_>6 0 1 17 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1367139890789986e-003</threshold>
- <left_val>0.2319408059120178</left_val>
- <right_val>-0.0832429975271225</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 9 3 14 -1.</_>
- <_>13 9 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2477089017629623e-004</threshold>
- <left_val>0.1375737041234970</left_val>
- <right_val>-0.0407095216214657</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 6 10 -1.</_>
- <_>9 2 3 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8041090010665357e-004</threshold>
- <left_val>0.0996559485793114</left_val>
- <right_val>-0.2011525034904480</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 21 14 2 -1.</_>
- <_>4 21 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0412159394472837e-003</threshold>
- <left_val>0.0486063882708550</left_val>
- <right_val>-0.2926115989685059</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 8 4 -1.</_>
- <_>9 0 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7135149575769901e-003</threshold>
- <left_val>-0.2040290981531143</left_val>
- <right_val>0.0872701928019524</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 4 8 -1.</_>
- <_>10 0 4 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1145422011613846</threshold>
- <left_val>0.2634224891662598</left_val>
- <right_val>-0.0289768297225237</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 12 6 -1.</_>
- <_>3 0 6 3 2.</_>
- <_>9 3 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9219061881303787e-003</threshold>
- <left_val>-0.2395422011613846</left_val>
- <right_val>0.0784254595637321</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 6 8 -1.</_>
- <_>10 8 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0642724037170410</threshold>
- <left_val>0.3865104913711548</left_val>
- <right_val>-0.0349812805652618</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 13 12 8 -1.</_>
- <_>4 13 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0208201594650745</threshold>
- <left_val>0.0366767384111881</left_val>
- <right_val>-0.5090972185134888</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 6 8 -1.</_>
- <_>10 8 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7503421083092690e-003</threshold>
- <left_val>-0.0491715185344219</left_val>
- <right_val>0.1854227036237717</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 6 8 -1.</_>
- <_>7 8 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0935890376567841</threshold>
- <left_val>0.6282237768173218</left_val>
- <right_val>-0.0251404698938131</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 13 8 10 -1.</_>
- <_>9 13 4 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8223377456888556e-004</threshold>
- <left_val>0.0400907993316650</left_val>
- <right_val>-0.1025065034627914</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 8 9 -1.</_>
- <_>6 14 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.3058718591928482e-003</threshold>
- <left_val>-0.2162594944238663</left_val>
- <right_val>0.0855050235986710</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 15 9 5 -1.</_>
- <_>12 15 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5919620208442211e-003</threshold>
- <left_val>-0.0657242611050606</left_val>
- <right_val>0.0619394518435001</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 4 7 -1.</_>
- <_>9 15 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8336649518460035e-003</threshold>
- <left_val>-0.1032480970025063</left_val>
- <right_val>0.2513414919376373</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 19 12 4 -1.</_>
- <_>4 19 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4351099058985710e-003</threshold>
- <left_val>-0.1510027945041657</left_val>
- <right_val>0.0373230092227459</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 15 6 8 -1.</_>
- <_>8 15 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7271270304918289e-003</threshold>
- <left_val>0.1350070983171463</left_val>
- <right_val>-0.1525021940469742</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 8 8 -1.</_>
- <_>12 5 4 4 2.</_>
- <_>8 9 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3573452169075608e-004</threshold>
- <left_val>-0.0609647706151009</left_val>
- <right_val>0.0719967335462570</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 7 4 -1.</_>
- <_>0 16 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3135100016370416e-004</threshold>
- <left_val>0.1290217936038971</left_val>
- <right_val>-0.1310760974884033</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 4 8 -1.</_>
- <_>11 3 2 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.0799290873110294e-003</threshold>
- <left_val>0.0494333095848560</left_val>
- <right_val>-0.1946709007024765</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 17 3 -1.</_>
- <_>1 13 17 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1066180672496557e-003</threshold>
- <left_val>0.2398454993963242</left_val>
- <right_val>-0.0712815672159195</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 8 4 15 -1.</_>
- <_>14 8 2 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0109994001686573</threshold>
- <left_val>0.0290179308503866</left_val>
- <right_val>-0.3850468099117279</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 14 3 -1.</_>
- <_>2 13 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5001590363681316e-003</threshold>
- <left_val>-0.0836524367332459</left_val>
- <right_val>0.1814112961292267</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 12 7 6 -1.</_>
- <_>6 14 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0137001499533653</threshold>
- <left_val>0.0367532595992088</left_val>
- <right_val>-0.4508658945560455</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 12 6 -1.</_>
- <_>2 2 6 3 2.</_>
- <_>8 5 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9507630281150341e-003</threshold>
- <left_val>-0.0694171115756035</left_val>
- <right_val>0.2154071033000946</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 8 5 -1.</_>
- <_>11 0 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5161393508315086e-003</threshold>
- <left_val>0.1070408970117569</left_val>
- <right_val>-0.1485738009214401</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 8 5 -1.</_>
- <_>4 0 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7032850300893188e-003</threshold>
- <left_val>-0.0818965211510658</left_val>
- <right_val>0.3239806890487671</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 18 20 -1.</_>
- <_>1 2 9 20 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0108529301360250</threshold>
- <left_val>-0.1314232945442200</left_val>
- <right_val>0.0999901890754700</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 10 8 -1.</_>
- <_>9 5 5 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.7832378875464201e-003</threshold>
- <left_val>0.0975966379046440</left_val>
- <right_val>-0.1608145982027054</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 7 10 -1.</_>
- <_>7 13 7 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0132632600143552</threshold>
- <left_val>0.0681890770792961</left_val>
- <right_val>-0.1482066065073013</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 4 14 -1.</_>
- <_>8 7 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0442763008177280</threshold>
- <left_val>0.5388399958610535</left_val>
- <right_val>-0.0347698815166950</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 7 4 16 -1.</_>
- <_>15 7 2 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0164764393121004</threshold>
- <left_val>-0.6934183835983276</left_val>
- <right_val>0.0302859302610159</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 12 7 -1.</_>
- <_>4 0 4 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0150639601051807</threshold>
- <left_val>0.0503653511404991</left_val>
- <right_val>-0.3221526145935059</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 7 4 7 -1.</_>
- <_>11 7 2 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0532300695776939</threshold>
- <left_val>4.0058908052742481e-003</left_val>
- <right_val>-1.0000929832458496</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 6 15 -1.</_>
- <_>7 4 3 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1228208988904953</threshold>
- <left_val>0.4043856859207153</left_val>
- <right_val>-0.0546611696481705</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 10 9 13 -1.</_>
- <_>9 10 3 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0802053213119507</threshold>
- <left_val>-0.1891590952873230</left_val>
- <right_val>0.0357042886316776</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 14 4 7 -1.</_>
- <_>3 14 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1679669842123985e-003</threshold>
- <left_val>-0.2764140069484711</left_val>
- <right_val>0.0599743984639645</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 1 3 14 -1.</_>
- <_>12 1 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1197320204228163e-003</threshold>
- <left_val>0.1130719035863876</left_val>
- <right_val>-0.0728807300329208</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 4 8 -1.</_>
- <_>7 11 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6612390540540218e-003</threshold>
- <left_val>-0.0478285700082779</left_val>
- <right_val>0.3906736969947815</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 6 4 7 -1.</_>
- <_>11 6 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6034730039536953e-003</threshold>
- <left_val>-0.0474484190344810</left_val>
- <right_val>0.3614696860313416</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 4 7 -1.</_>
- <_>6 6 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0733479866757989e-003</threshold>
- <left_val>0.1126487031579018</left_val>
- <right_val>-0.2907496094703674</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 9 9 -1.</_>
- <_>10 5 3 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0183106902986765</threshold>
- <left_val>0.0967293530702591</left_val>
- <right_val>-0.1015082001686096</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 12 12 -1.</_>
- <_>6 5 4 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0681947395205498</threshold>
- <left_val>-0.2204868942499161</left_val>
- <right_val>0.1097799018025398</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 19 14 4 -1.</_>
- <_>11 19 7 2 2.</_>
- <_>4 21 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.9977607131004333e-003</threshold>
- <left_val>-0.0296524409204721</left_val>
- <right_val>0.1505921930074692</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 19 14 4 -1.</_>
- <_>1 19 7 2 2.</_>
- <_>8 21 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6954131317324936e-004</threshold>
- <left_val>-0.1991785019636154</left_val>
- <right_val>0.0946779921650887</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 18 9 5 -1.</_>
- <_>12 18 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9090729337185621e-004</threshold>
- <left_val>-0.1324030011892319</left_val>
- <right_val>0.0630881786346436</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 9 5 -1.</_>
- <_>4 18 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5691739544272423e-003</threshold>
- <left_val>0.1031828969717026</left_val>
- <right_val>-0.1927673965692520</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 4 8 6 -1.</_>
- <_>11 4 4 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0994341298937798</threshold>
- <left_val>0.2591108083724976</left_val>
- <right_val>-0.0439478717744350</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 7 6 -1.</_>
- <_>6 10 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6295922994613647e-003</threshold>
- <left_val>-0.3687196969985962</left_val>
- <right_val>0.0465061701834202</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 17 14 2 -1.</_>
- <_>5 18 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7397940391674638e-003</threshold>
- <left_val>0.1373603940010071</left_val>
- <right_val>-0.0698224827647209</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 9 3 -1.</_>
- <_>5 7 9 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0132694300264120</threshold>
- <left_val>0.4521614909172058</left_val>
- <right_val>-0.0384612381458282</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 9 4 11 -1.</_>
- <_>13 9 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5604839902371168e-003</threshold>
- <left_val>0.0548587813973427</left_val>
- <right_val>-0.2496352940797806</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 4 11 -1.</_>
- <_>4 9 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9173050532117486e-003</threshold>
- <left_val>-0.2573320865631104</left_val>
- <right_val>0.0674813836812973</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 3 14 -1.</_>
- <_>13 0 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0374616496264935</threshold>
- <left_val>0.5966824889183044</left_val>
- <right_val>-0.0181210804730654</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 3 14 -1.</_>
- <_>5 0 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9658938981592655e-003</threshold>
- <left_val>0.1950152069330216</left_val>
- <right_val>-0.0900263413786888</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 10 5 6 -1.</_>
- <_>7 13 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2596408855170012e-003</threshold>
- <left_val>-0.3564716875553131</left_val>
- <right_val>0.0464952811598778</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 17 4 -1.</_>
- <_>0 14 17 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0120436502620578</threshold>
- <left_val>0.3750874996185303</left_val>
- <right_val>-0.0530721992254257</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 6 10 -1.</_>
- <_>12 7 2 10 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.1690650396049023e-003</threshold>
- <left_val>-0.0418457612395287</left_val>
- <right_val>0.1117779016494751</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 12 12 -1.</_>
- <_>6 13 4 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0142144998535514</threshold>
- <left_val>0.0719657614827156</left_val>
- <right_val>-0.2677752077579498</right_val></_></_></trees>
- <stage_threshold>-0.8136615157127380</stage_threshold>
- <parent>21</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 23 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 12 8 -1.</_>
- <_>7 15 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0122309699654579</threshold>
- <left_val>0.1456761062145233</left_val>
- <right_val>-0.2404517978429794</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 8 8 -1.</_>
- <_>10 0 4 4 2.</_>
- <_>6 4 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5717672221362591e-003</threshold>
- <left_val>-0.1878961026668549</left_val>
- <right_val>0.0405967086553574</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 7 8 -1.</_>
- <_>0 17 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5606552632525563e-004</threshold>
- <left_val>0.1664956957101822</left_val>
- <right_val>-0.1181783974170685</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 4 8 -1.</_>
- <_>8 11 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3173572784289718e-004</threshold>
- <left_val>-0.1422403007745743</left_val>
- <right_val>0.0416161604225636</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 2 14 -1.</_>
- <_>6 8 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.7869318667799234e-004</threshold>
- <left_val>-0.1643044948577881</left_val>
- <right_val>0.1552329063415527</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 8 7 4 -1.</_>
- <_>12 10 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0136414803564548</threshold>
- <left_val>0.3086752891540527</left_val>
- <right_val>-0.0271722692996264</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 14 4 -1.</_>
- <_>0 13 7 2 2.</_>
- <_>7 15 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4917860426066909e-005</threshold>
- <left_val>-0.1559205055236816</left_val>
- <right_val>0.1017657965421677</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 13 7 8 -1.</_>
- <_>6 15 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7703643366694450e-003</threshold>
- <left_val>0.0615828782320023</left_val>
- <right_val>-0.3054605126380920</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 4 15 -1.</_>
- <_>8 7 2 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5755198486149311e-003</threshold>
- <left_val>-0.0687598735094070</left_val>
- <right_val>0.2967574894428253</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 16 5 6 -1.</_>
- <_>11 19 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0498411618173122</threshold>
- <left_val>0.0101279104128480</left_val>
- <right_val>-0.7921342253684998</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 6 10 -1.</_>
- <_>4 0 3 5 2.</_>
- <_>7 5 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0110908197239041</threshold>
- <left_val>0.1833902001380920</left_val>
- <right_val>-0.1011369973421097</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 10 7 6 -1.</_>
- <_>9 12 7 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0859370827674866</threshold>
- <left_val>-0.4199456870555878</left_val>
- <right_val>0.0155684798955917</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 14 2 -1.</_>
- <_>9 0 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0151329915970564e-003</threshold>
- <left_val>0.1147446036338806</left_val>
- <right_val>-0.1609168052673340</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 18 8 -1.</_>
- <_>10 10 9 4 2.</_>
- <_>1 14 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0134702501818538</threshold>
- <left_val>-0.3062644898891449</left_val>
- <right_val>0.0531861409544945</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 15 3 -1.</_>
- <_>1 19 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0166351106017828</threshold>
- <left_val>-0.0434589385986328</left_val>
- <right_val>0.4404331147670746</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 18 14 3 -1.</_>
- <_>4 19 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2650870960205793e-003</threshold>
- <left_val>0.1598511934280396</left_val>
- <right_val>-0.1272598057985306</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 19 18 -1.</_>
- <_>0 9 19 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0702881664037704</threshold>
- <left_val>0.0648916289210320</left_val>
- <right_val>-0.2349617928266525</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 11 20 -1.</_>
- <_>4 10 11 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0291863791644573</threshold>
- <left_val>-0.2092027962207794</left_val>
- <right_val>0.0892578735947609</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 9 18 -1.</_>
- <_>5 9 9 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0624469295144081e-003</threshold>
- <left_val>0.3437409102916718</left_val>
- <right_val>-0.0620930492877960</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 4 20 -1.</_>
- <_>9 10 4 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9356318991631269e-003</threshold>
- <left_val>-0.1424936950206757</left_val>
- <right_val>0.0454122610390186</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 6 6 -1.</_>
- <_>1 14 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.7740739323198795e-003</threshold>
- <left_val>0.3164179921150208</left_val>
- <right_val>-0.0496016293764114</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 16 6 6 -1.</_>
- <_>12 19 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4607170305680484e-004</threshold>
- <left_val>0.1075204983353615</left_val>
- <right_val>-0.1154003962874413</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 2 14 -1.</_>
- <_>4 8 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5684450995177031e-003</threshold>
- <left_val>-0.4167262911796570</left_val>
- <right_val>0.0422028191387653</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 11 5 12 -1.</_>
- <_>7 15 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0149808842688799e-003</threshold>
- <left_val>0.1086013019084930</left_val>
- <right_val>-0.1634970009326935</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 5 12 -1.</_>
- <_>5 14 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.7240645661950111e-003</threshold>
- <left_val>-0.2200064063072205</left_val>
- <right_val>0.0909270271658897</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 4 16 -1.</_>
- <_>15 0 2 8 2.</_>
- <_>13 8 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3565947823226452e-003</threshold>
- <left_val>-0.1033570021390915</left_val>
- <right_val>0.1605197042226791</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 12 8 -1.</_>
- <_>7 0 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4252731129527092e-003</threshold>
- <left_val>-0.0696356371045113</left_val>
- <right_val>0.3149088025093079</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 11 6 7 -1.</_>
- <_>15 11 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7803248055279255e-003</threshold>
- <left_val>-0.4363917112350464</left_val>
- <right_val>0.0361275486648083</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 7 8 -1.</_>
- <_>0 10 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9641189612448215e-003</threshold>
- <left_val>0.2179728001356125</left_val>
- <right_val>-0.0778759419918060</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 7 6 -1.</_>
- <_>6 8 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0240286793559790</threshold>
- <left_val>0.0259409602731466</left_val>
- <right_val>-0.5764058828353882</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 4 14 -1.</_>
- <_>7 8 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0815144777297974</threshold>
- <left_val>-0.0343803800642490</left_val>
- <right_val>0.5795750021934509</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 17 6 6 -1.</_>
- <_>13 17 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7858170950785279e-004</threshold>
- <left_val>0.1039874032139778</left_val>
- <right_val>-0.2383109033107758</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 4 12 -1.</_>
- <_>5 17 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0426395200192928</threshold>
- <left_val>-0.0411679707467556</left_val>
- <right_val>0.4055674970149994</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 17 6 6 -1.</_>
- <_>13 17 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0414459072053432e-003</threshold>
- <left_val>-0.3865289092063904</left_val>
- <right_val>0.0530535802245140</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 2 14 -1.</_>
- <_>0 15 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0422803089022636</threshold>
- <left_val>0.0150585295632482</left_val>
- <right_val>-0.9662395715713501</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 18 6 5 -1.</_>
- <_>13 18 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.3401766712777317e-005</threshold>
- <left_val>0.0844386368989944</left_val>
- <right_val>-0.1046855002641678</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 2 14 -1.</_>
- <_>5 0 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7503020614385605e-003</threshold>
- <left_val>-0.0381354913115501</left_val>
- <right_val>0.4306662976741791</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 11 6 8 -1.</_>
- <_>15 11 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7291309777647257e-003</threshold>
- <left_val>0.0757335871458054</left_val>
- <right_val>-0.1538420021533966</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 3 12 -1.</_>
- <_>1 17 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8985757166519761e-004</threshold>
- <left_val>0.1372247934341431</left_val>
- <right_val>-0.1263125985860825</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 18 6 5 -1.</_>
- <_>12 18 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2209450253285468e-004</threshold>
- <left_val>0.0511391386389732</left_val>
- <right_val>-0.0666613131761551</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 4 8 -1.</_>
- <_>0 19 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1202819878235459e-003</threshold>
- <left_val>-0.1096849963068962</left_val>
- <right_val>0.1561145037412643</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 11 6 8 -1.</_>
- <_>15 11 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0205960292369127</threshold>
- <left_val>-0.4542526006698608</left_val>
- <right_val>5.6112911552190781e-003</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 6 8 -1.</_>
- <_>2 11 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1287859678268433e-003</threshold>
- <left_val>-0.3942252993583679</left_val>
- <right_val>0.0441448204219341</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 17 14 3 -1.</_>
- <_>5 18 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3597300536930561e-003</threshold>
- <left_val>0.1939166039228439</left_val>
- <right_val>-0.0659493282437325</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 7 6 -1.</_>
- <_>0 17 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7703061136417091e-004</threshold>
- <left_val>-0.1190071031451225</left_val>
- <right_val>0.1637544035911560</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 8 4 10 -1.</_>
- <_>10 8 2 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0109937703236938</threshold>
- <left_val>-0.2991574108600617</left_val>
- <right_val>0.0287935007363558</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 16 7 -1.</_>
- <_>5 11 8 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.1108389422297478e-003</threshold>
- <left_val>-0.0481459498405457</left_val>
- <right_val>0.3839995861053467</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 9 16 -1.</_>
- <_>8 0 3 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6698309704661369e-003</threshold>
- <left_val>0.0887120366096497</left_val>
- <right_val>-0.3065086007118225</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 2 14 -1.</_>
- <_>7 6 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3895990559831262e-003</threshold>
- <left_val>-0.0551562011241913</left_val>
- <right_val>0.3510990142822266</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 5 4 15 -1.</_>
- <_>12 5 2 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2493750546127558e-003</threshold>
- <left_val>-0.1802306026220322</left_val>
- <right_val>0.1349010020494461</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 10 4 -1.</_>
- <_>9 8 10 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.5981278419494629e-003</threshold>
- <left_val>0.0797642469406128</left_val>
- <right_val>-0.2784745991230011</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 4 14 -1.</_>
- <_>8 1 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0381334796547890</threshold>
- <left_val>0.3515341877937317</left_val>
- <right_val>-0.0170894302427769</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 4 14 -1.</_>
- <_>9 1 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6064890921115875e-003</threshold>
- <left_val>-0.2219419926404953</left_val>
- <right_val>0.1067579984664917</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 14 18 9 -1.</_>
- <_>7 17 6 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2379301041364670</threshold>
- <left_val>0.4007951021194458</left_val>
- <right_val>-0.0621518082916737</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 7 9 -1.</_>
- <_>6 12 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0120104104280472</threshold>
- <left_val>0.0586469210684299</left_val>
- <right_val>-0.3523482978343964</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 18 2 -1.</_>
- <_>1 12 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4618777036666870e-003</threshold>
- <left_val>-0.0414554998278618</left_val>
- <right_val>0.3936221897602081</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 4 16 -1.</_>
- <_>7 11 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0144825996831059</threshold>
- <left_val>-0.2704995870590210</left_val>
- <right_val>0.0694004967808723</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 10 15 3 -1.</_>
- <_>2 11 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5672810152173042e-003</threshold>
- <left_val>-0.0823579877614975</left_val>
- <right_val>0.2295956015586853</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 12 7 9 -1.</_>
- <_>6 15 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8167857825756073e-003</threshold>
- <left_val>0.0852120667695999</left_val>
- <right_val>-0.2281312048435211</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 15 3 -1.</_>
- <_>4 11 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.4145028591156006e-004</threshold>
- <left_val>0.1326024979352951</left_val>
- <right_val>-0.0810919627547264</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 19 14 4 -1.</_>
- <_>0 19 7 2 2.</_>
- <_>7 21 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8798429886810482e-004</threshold>
- <left_val>-0.2180052995681763</left_val>
- <right_val>0.0829776674509048</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 17 14 3 -1.</_>
- <_>5 18 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0263080000877380</threshold>
- <left_val>-0.0255589094012976</left_val>
- <right_val>0.5898965001106262</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 3 14 -1.</_>
- <_>2 7 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0907879807054996e-003</threshold>
- <left_val>0.0576117411255836</left_val>
- <right_val>-0.3028649091720581</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 6 7 -1.</_>
- <_>11 0 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0111323697492480</threshold>
- <left_val>-0.1382286995649338</left_val>
- <right_val>0.0422580800950527</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 6 7 -1.</_>
- <_>6 0 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5296150231733918e-003</threshold>
- <left_val>0.0917496979236603</left_val>
- <right_val>-0.2218109965324402</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 8 6 -1.</_>
- <_>6 5 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7247601691633463e-004</threshold>
- <left_val>-0.0670843496918678</left_val>
- <right_val>0.0797620713710785</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 3 16 -1.</_>
- <_>6 2 1 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0103866597637534</threshold>
- <left_val>-0.0746211707592011</left_val>
- <right_val>0.2291668951511383</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 4 4 15 -1.</_>
- <_>16 4 2 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2723900191485882e-004</threshold>
- <left_val>-0.0865005999803543</left_val>
- <right_val>0.0978149101138115</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 12 6 5 -1.</_>
- <_>6 12 3 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0153247797861695</threshold>
- <left_val>0.0800943300127983</left_val>
- <right_val>-0.2201195061206818</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 9 3 14 -1.</_>
- <_>9 9 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.7603963911533356e-003</threshold>
- <left_val>0.3129082024097443</left_val>
- <right_val>-0.0593733415007591</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 7 4 -1.</_>
- <_>0 18 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3745700309518725e-004</threshold>
- <left_val>0.1185595989227295</left_val>
- <right_val>-0.1451420038938522</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 14 3 -1.</_>
- <_>5 17 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0718279518187046e-003</threshold>
- <left_val>0.1256764978170395</left_val>
- <right_val>-0.0531019382178783</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 4 15 -1.</_>
- <_>1 4 2 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3873867727816105e-004</threshold>
- <left_val>-0.1071565970778465</left_val>
- <right_val>0.1603776067495346</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 8 6 -1.</_>
- <_>10 4 8 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0692686364054680</threshold>
- <left_val>-0.7929406762123108</left_val>
- <right_val>8.2057341933250427e-003</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 8 6 -1.</_>
- <_>1 4 8 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0104301301762462</threshold>
- <left_val>0.0516202002763748</left_val>
- <right_val>-0.3347268998622894</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 4 16 -1.</_>
- <_>12 6 2 8 2.</_>
- <_>10 14 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0718889087438583</threshold>
- <left_val>1.5941270394250751e-003</left_val>
- <right_val>-0.8584092855453491</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 4 18 -1.</_>
- <_>7 1 2 9 2.</_>
- <_>9 10 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0202174205332994</threshold>
- <left_val>-0.0398174002766609</left_val>
- <right_val>0.4635106027126312</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 4 7 -1.</_>
- <_>8 4 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8006029576063156e-003</threshold>
- <left_val>-0.0217013899236918</left_val>
- <right_val>0.0990401431918144</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 4 7 -1.</_>
- <_>9 4 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0352612100541592</threshold>
- <left_val>0.0170828700065613</left_val>
- <right_val>-1.0000469684600830</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 12 14 -1.</_>
- <_>7 0 6 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.4525587856769562</threshold>
- <left_val>-0.9129211902618408</left_val>
- <right_val>5.2670161239802837e-003</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 2 14 -1.</_>
- <_>3 1 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5286221690475941e-003</threshold>
- <left_val>-0.5258156061172485</left_val>
- <right_val>0.0220447406172752</right_val></_></_></trees>
- <stage_threshold>-30.8131999969482420</stage_threshold>
- <parent>22</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 24 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 14 4 -1.</_>
- <_>0 18 7 2 2.</_>
- <_>7 20 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9085609130561352e-003</threshold>
- <left_val>-0.2019598037004471</left_val>
- <right_val>0.1611853986978531</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 8 8 -1.</_>
- <_>10 0 4 4 2.</_>
- <_>6 4 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.4552230760455132e-003</threshold>
- <left_val>-0.1867610067129135</left_val>
- <right_val>0.0353596508502960</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 6 10 -1.</_>
- <_>4 9 3 5 2.</_>
- <_>7 14 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7815890498459339e-003</threshold>
- <left_val>-0.1222874969244003</left_val>
- <right_val>0.2036256939172745</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 18 6 -1.</_>
- <_>10 17 9 3 2.</_>
- <_>1 20 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6125850901007652e-003</threshold>
- <left_val>-0.3696570992469788</left_val>
- <right_val>0.0395666286349297</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 6 21 -1.</_>
- <_>7 7 2 7 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2590085864067078</threshold>
- <left_val>0.6431263089179993</left_val>
- <right_val>3.1312569626607001e-004</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 12 7 -1.</_>
- <_>6 7 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6097189188003540e-003</threshold>
- <left_val>-0.0272621605545282</left_val>
- <right_val>0.2189165055751801</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 12 3 -1.</_>
- <_>7 0 6 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0141355004161596</threshold>
- <left_val>0.0760067924857140</left_val>
- <right_val>-0.2603108882904053</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 9 5 -1.</_>
- <_>8 0 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9708990156650543e-003</threshold>
- <left_val>-0.1914646029472351</left_val>
- <right_val>0.1107890009880066</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 3 14 -1.</_>
- <_>8 9 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0699110571295023e-003</threshold>
- <left_val>0.0901270583271980</left_val>
- <right_val>-0.1987635940313339</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 14 16 9 -1.</_>
- <_>3 17 16 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0153157301247120</threshold>
- <left_val>0.0518833696842194</left_val>
- <right_val>-0.3106929957866669</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 6 6 -1.</_>
- <_>4 17 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.3937349952757359e-005</threshold>
- <left_val>0.1055530980229378</left_val>
- <right_val>-0.1676875054836273</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 10 20 -1.</_>
- <_>5 6 10 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0818768888711929</threshold>
- <left_val>0.4605309963226318</left_val>
- <right_val>-0.0382763482630253</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 12 7 -1.</_>
- <_>4 16 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.8246334344148636e-003</threshold>
- <left_val>-0.3310768008232117</left_val>
- <right_val>0.0696745663881302</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 9 4 -1.</_>
- <_>5 2 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7569031119346619e-003</threshold>
- <left_val>-0.2756631076335907</left_val>
- <right_val>0.0693756267428398</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 13 6 -1.</_>
- <_>3 2 13 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6343189422041178e-003</threshold>
- <left_val>0.1665885001420975</left_val>
- <right_val>-0.1203157976269722</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 13 7 8 -1.</_>
- <_>11 15 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0219794902950525</threshold>
- <left_val>-0.0223163496702909</left_val>
- <right_val>0.3440257906913757</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 4 8 -1.</_>
- <_>3 4 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0613865517079830</threshold>
- <left_val>0.0179060008376837</left_val>
- <right_val>-0.8812987208366394</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 17 9 6 -1.</_>
- <_>12 17 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0270617399364710</threshold>
- <left_val>-0.0324443504214287</left_val>
- <right_val>0.2886644899845123</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 7 6 -1.</_>
- <_>6 7 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5964036881923676e-003</threshold>
- <left_val>-0.3074331879615784</left_val>
- <right_val>0.0524994805455208</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 17 7 6 -1.</_>
- <_>8 19 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7550870543345809e-003</threshold>
- <left_val>0.1043424978852272</left_val>
- <right_val>-0.1112620979547501</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 5 8 -1.</_>
- <_>5 16 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6808100044727325e-003</threshold>
- <left_val>-0.1171241998672485</left_val>
- <right_val>0.1560686975717545</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 19 2 -1.</_>
- <_>0 16 19 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3623350532725453e-003</threshold>
- <left_val>0.2263745963573456</left_val>
- <right_val>-0.0864548012614250</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 7 4 -1.</_>
- <_>6 9 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6580429878085852e-003</threshold>
- <left_val>-0.3982911109924316</left_val>
- <right_val>0.0471435897052288</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 2 21 -1.</_>
- <_>9 7 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0526687204837799</threshold>
- <left_val>-0.0196967907249928</left_val>
- <right_val>0.4299823939800263</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 19 15 4 -1.</_>
- <_>5 19 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4802549635060132e-004</threshold>
- <left_val>0.0911152362823486</left_val>
- <right_val>-0.2048067003488541</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 20 10 3 -1.</_>
- <_>9 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2204200029373169e-003</threshold>
- <left_val>0.0330615118145943</left_val>
- <right_val>-0.1732486933469772</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 15 3 -1.</_>
- <_>0 18 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.4577670097351074e-003</threshold>
- <left_val>0.2977420091629028</left_val>
- <right_val>-0.0589791312813759</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 13 6 5 -1.</_>
- <_>12 13 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7641530139371753e-003</threshold>
- <left_val>-0.0963047668337822</left_val>
- <right_val>0.0653046369552612</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 7 6 -1.</_>
- <_>6 9 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.1057827919721603e-003</threshold>
- <left_val>0.0571583695709705</left_val>
- <right_val>-0.3112392127513886</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 14 3 -1.</_>
- <_>3 16 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0139634003862739</threshold>
- <left_val>-0.0352346412837505</left_val>
- <right_val>0.3571985065937042</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 20 10 3 -1.</_>
- <_>5 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1854680273681879e-003</threshold>
- <left_val>-0.2152840048074722</left_val>
- <right_val>0.0760408788919449</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 8 4 -1.</_>
- <_>6 7 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3546650558710098e-003</threshold>
- <left_val>-0.0838922932744026</left_val>
- <right_val>0.0282906908541918</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 7 6 -1.</_>
- <_>1 19 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6740639694035053e-003</threshold>
- <left_val>0.1514583975076675</left_val>
- <right_val>-0.1175632029771805</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 17 12 4 -1.</_>
- <_>11 17 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7018489781767130e-003</threshold>
- <left_val>0.1383357048034668</left_val>
- <right_val>-0.0508328303694725</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 6 7 -1.</_>
- <_>5 15 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2117499611340463e-004</threshold>
- <left_val>-0.2396084964275360</left_val>
- <right_val>0.0750043466687202</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 12 7 -1.</_>
- <_>6 7 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0227732006460428</threshold>
- <left_val>-0.0224336292594671</left_val>
- <right_val>0.3704926073551178</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 12 12 -1.</_>
- <_>1 13 12 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.5928199589252472e-003</threshold>
- <left_val>0.0972054377198219</left_val>
- <right_val>-0.1773710995912552</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 5 9 -1.</_>
- <_>12 9 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3168029040098190e-003</threshold>
- <left_val>-0.0564143583178520</left_val>
- <right_val>0.0919384211301804</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 5 9 -1.</_>
- <_>2 9 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3929888848215342e-003</threshold>
- <left_val>0.2107668071985245</left_val>
- <right_val>-0.0928803533315659</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 6 7 -1.</_>
- <_>14 8 2 7 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0107665704563260</threshold>
- <left_val>-0.1297437995672226</left_val>
- <right_val>0.0599589087069035</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 8 10 -1.</_>
- <_>5 9 4 5 2.</_>
- <_>9 14 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.9714798852801323e-004</threshold>
- <left_val>-0.1427922993898392</left_val>
- <right_val>0.1427970975637436</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 16 6 -1.</_>
- <_>10 11 8 3 2.</_>
- <_>2 14 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6825798712670803e-003</threshold>
- <left_val>-0.2381983995437622</left_val>
- <right_val>0.0481196604669094</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 3 16 -1.</_>
- <_>9 4 1 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7201410159468651e-003</threshold>
- <left_val>0.1995317935943604</left_val>
- <right_val>-0.0907835736870766</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 9 4 14 -1.</_>
- <_>9 9 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0185534097254276</threshold>
- <left_val>-0.2662154138088226</left_val>
- <right_val>0.0228727497160435</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 4 14 -1.</_>
- <_>8 9 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0256200116127729e-003</threshold>
- <left_val>-0.0911061316728592</left_val>
- <right_val>0.2455954998731613</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 17 12 4 -1.</_>
- <_>11 17 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0621463097631931</threshold>
- <left_val>-1.</left_val>
- <right_val>5.2797337993979454e-003</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 12 4 -1.</_>
- <_>4 17 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7690609674900770e-003</threshold>
- <left_val>-0.1937965005636215</left_val>
- <right_val>0.0956961065530777</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 12 6 10 -1.</_>
- <_>16 12 3 5 2.</_>
- <_>13 17 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3277359509374946e-005</threshold>
- <left_val>0.1137404963374138</left_val>
- <right_val>-0.1350484937429428</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 6 6 -1.</_>
- <_>3 17 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2779419776052237e-003</threshold>
- <left_val>0.0796061605215073</left_val>
- <right_val>-0.2359701991081238</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 4 6 8 -1.</_>
- <_>12 4 3 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0447424799203873</threshold>
- <left_val>0.1855715066194534</left_val>
- <right_val>-0.0341678299009800</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 10 15 -1.</_>
- <_>8 6 5 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7726130792871118e-004</threshold>
- <left_val>-0.0579377189278603</left_val>
- <right_val>0.2890321910381317</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 10 7 4 -1.</_>
- <_>10 10 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0562254711985588</threshold>
- <left_val>0.0138407899066806</left_val>
- <right_val>-0.7719973921775818</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 9 7 -1.</_>
- <_>4 9 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.6825769394636154e-003</threshold>
- <left_val>-0.1826308965682983</left_val>
- <right_val>0.1142326965928078</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 18 6 -1.</_>
- <_>10 17 9 3 2.</_>
- <_>1 20 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4038869887590408e-003</threshold>
- <left_val>-0.1900413930416107</left_val>
- <right_val>0.0659285634756088</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 13 3 -1.</_>
- <_>5 1 13 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0128402197733521</threshold>
- <left_val>-0.0362791009247303</left_val>
- <right_val>0.4551934003829956</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 3 9 -1.</_>
- <_>11 1 1 9 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.1061480036005378e-003</threshold>
- <left_val>-0.0630546882748604</left_val>
- <right_val>0.0816094726324081</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 9 3 -1.</_>
- <_>8 1 9 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.6486179344356060e-003</threshold>
- <left_val>-0.2710854113101959</left_val>
- <right_val>0.0801677033305168</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 12 12 -1.</_>
- <_>13 1 6 6 2.</_>
- <_>7 7 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4021991565823555e-003</threshold>
- <left_val>-0.0669465884566307</left_val>
- <right_val>0.1063491031527519</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 8 6 -1.</_>
- <_>7 4 8 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0823703780770302</threshold>
- <left_val>0.3451730012893677</left_val>
- <right_val>-0.0484684295952320</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 11 8 4 -1.</_>
- <_>11 11 8 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0374298281967640</threshold>
- <left_val>-0.6963095068931580</left_val>
- <right_val>0.0130543801933527</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 11 4 8 -1.</_>
- <_>8 11 2 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0105004003271461</threshold>
- <left_val>0.0960282832384110</left_val>
- <right_val>-0.2636274099349976</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 10 7 4 -1.</_>
- <_>10 10 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0688512399792671</threshold>
- <left_val>3.7341150455176830e-003</left_val>
- <right_val>-0.9998915791511536</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 10 4 7 -1.</_>
- <_>9 10 2 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.0171310277655721e-003</threshold>
- <left_val>-0.2350011020898819</left_val>
- <right_val>0.0910971835255623</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 3 14 -1.</_>
- <_>9 7 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0290579497814178</threshold>
- <left_val>0.5997784733772278</left_val>
- <right_val>-0.0368990004062653</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 10 7 -1.</_>
- <_>8 6 5 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0220227297395468</threshold>
- <left_val>0.0580346509814262</left_val>
- <right_val>-0.3274875879287720</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 16 3 -1.</_>
- <_>3 7 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3123541399836540e-003</threshold>
- <left_val>0.2215394973754883</left_val>
- <right_val>-0.0613320209085941</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 2 17 -1.</_>
- <_>5 5 1 17 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0109497103840113</threshold>
- <left_val>0.0218373797833920</left_val>
- <right_val>-0.7466219067573547</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 6 18 -1.</_>
- <_>15 0 3 9 2.</_>
- <_>12 9 3 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0436107404530048</threshold>
- <left_val>-0.0450989492237568</left_val>
- <right_val>0.2810913920402527</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 6 16 -1.</_>
- <_>3 4 3 8 2.</_>
- <_>6 12 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0772521793842316</threshold>
- <left_val>0.0208017807453871</left_val>
- <right_val>-0.8664823770523071</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 0 6 18 -1.</_>
- <_>15 0 3 9 2.</_>
- <_>12 9 3 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0240238904953003</threshold>
- <left_val>0.3988442122936249</left_val>
- <right_val>-0.0352271199226379</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 16 4 -1.</_>
- <_>0 1 8 2 2.</_>
- <_>8 3 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0195597801357508</threshold>
- <left_val>0.0359447300434113</left_val>
- <right_val>-0.5146911740303040</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 12 12 5 -1.</_>
- <_>6 12 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0259172990918159</threshold>
- <left_val>-0.0129426699131727</left_val>
- <right_val>0.4169597029685974</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 3 10 -1.</_>
- <_>3 12 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6949301031418145e-004</threshold>
- <left_val>0.1666599959135056</left_val>
- <right_val>-0.0906800404191017</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 7 12 -1.</_>
- <_>11 7 7 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0845900326967239</threshold>
- <left_val>-0.5928378105163574</left_val>
- <right_val>7.2113061323761940e-003</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 8 6 -1.</_>
- <_>0 8 8 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9234940242022276e-004</threshold>
- <left_val>0.1745820045471191</left_val>
- <right_val>-0.1007250994443893</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 3 7 6 -1.</_>
- <_>12 5 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0240093506872654</threshold>
- <left_val>-0.3913143873214722</left_val>
- <right_val>0.0223610401153564</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 7 6 -1.</_>
- <_>0 5 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7586968867108226e-004</threshold>
- <left_val>0.1830610036849976</left_val>
- <right_val>-0.1254113018512726</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 10 6 8 -1.</_>
- <_>15 10 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9483099933713675e-003</threshold>
- <left_val>0.0653010532259941</left_val>
- <right_val>-0.2038708031177521</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 14 2 -1.</_>
- <_>0 18 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6947780754417181e-003</threshold>
- <left_val>-0.0608783215284348</left_val>
- <right_val>0.3040302097797394</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 10 6 8 -1.</_>
- <_>15 10 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9413169249892235e-003</threshold>
- <left_val>-0.3028449118137360</left_val>
- <right_val>0.0475504994392395</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 14 2 -1.</_>
- <_>0 18 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.1274640504270792e-004</threshold>
- <left_val>0.1620078980922699</left_val>
- <right_val>-0.1182216033339500</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 8 8 -1.</_>
- <_>10 0 4 4 2.</_>
- <_>6 4 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0243097506463528</threshold>
- <left_val>-0.0114427898079157</left_val>
- <right_val>0.2045395970344544</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 6 8 -1.</_>
- <_>2 10 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.1473112115636468e-004</threshold>
- <left_val>-0.2070782929658890</left_val>
- <right_val>0.0757013410329819</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 3 14 -1.</_>
- <_>14 0 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6473390646278858e-003</threshold>
- <left_val>0.2409386038780212</left_val>
- <right_val>-0.0835655629634857</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 6 7 -1.</_>
- <_>8 0 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0125132203102112</threshold>
- <left_val>0.0415360406041145</left_val>
- <right_val>-0.3748772144317627</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 8 8 -1.</_>
- <_>10 0 4 4 2.</_>
- <_>6 4 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2148571014404297e-003</threshold>
- <left_val>0.0204341299831867</left_val>
- <right_val>-0.0900578498840332</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 8 8 -1.</_>
- <_>5 0 4 4 2.</_>
- <_>9 4 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0954229403287172e-003</threshold>
- <left_val>0.1162526011466980</left_val>
- <right_val>-0.1856177002191544</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 16 7 -1.</_>
- <_>3 7 8 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2117325067520142</threshold>
- <left_val>-1.</left_val>
- <right_val>2.4372090119868517e-003</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 16 7 -1.</_>
- <_>8 7 8 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0188589803874493e-003</threshold>
- <left_val>-0.0756839662790298</left_val>
- <right_val>0.2955543100833893</right_val></_></_></trees>
- <stage_threshold>-30.7800998687744140</stage_threshold>
- <parent>23</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 25 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 11 10 8 -1.</_>
- <_>7 11 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0244226008653641</threshold>
- <left_val>0.2044697999954224</left_val>
- <right_val>-0.2229966968297958</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 8 6 9 -1.</_>
- <_>14 8 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0574000189080834e-003</threshold>
- <left_val>-0.1435517072677612</left_val>
- <right_val>0.0856035426259041</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 6 9 -1.</_>
- <_>3 8 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5123930536210537e-003</threshold>
- <left_val>0.1099767982959747</left_val>
- <right_val>-0.2304480969905853</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 14 11 -1.</_>
- <_>4 3 7 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1211273968219757</threshold>
- <left_val>0.0332675017416477</left_val>
- <right_val>-0.9991015195846558</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 13 3 -1.</_>
- <_>4 6 13 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.9103590641170740e-003</threshold>
- <left_val>-0.1039192974567413</left_val>
- <right_val>0.1929288059473038</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 6 9 -1.</_>
- <_>9 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.6717177182435989e-003</threshold>
- <left_val>-0.2708722054958344</left_val>
- <right_val>0.0997629016637802</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 14 12 -1.</_>
- <_>1 0 7 6 2.</_>
- <_>8 6 7 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1140959151089191e-003</threshold>
- <left_val>-0.1151710003614426</left_val>
- <right_val>0.2042921930551529</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 8 4 -1.</_>
- <_>10 0 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0205909907817841</threshold>
- <left_val>-0.0331075787544250</left_val>
- <right_val>0.4637545943260193</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 4 12 -1.</_>
- <_>5 10 2 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1507490416988730e-003</threshold>
- <left_val>0.0760146230459213</left_val>
- <right_val>-0.2748520970344544</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 2 22 -1.</_>
- <_>11 11 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5449788235127926e-003</threshold>
- <left_val>-0.1126658990979195</left_val>
- <right_val>0.0500315688550472</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 19 14 4 -1.</_>
- <_>0 19 7 2 2.</_>
- <_>7 21 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6102850204333663e-003</threshold>
- <left_val>-0.1879495978355408</left_val>
- <right_val>0.1123441010713577</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 8 2 8 -1.</_>
- <_>10 8 1 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.8527909889817238e-003</threshold>
- <left_val>0.0404574684798718</left_val>
- <right_val>-0.0847164615988731</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 4 14 -1.</_>
- <_>5 0 2 7 2.</_>
- <_>7 7 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0883300825953484e-003</threshold>
- <left_val>0.1250918954610825</left_val>
- <right_val>-0.1485010981559753</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 4 10 -1.</_>
- <_>8 9 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6648479504510760e-003</threshold>
- <left_val>-0.1034672036767006</left_val>
- <right_val>0.0535852313041687</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 8 2 -1.</_>
- <_>9 8 8 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.1635090708732605e-003</threshold>
- <left_val>-0.3372938930988312</left_val>
- <right_val>0.0611929185688496</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 19 3 -1.</_>
- <_>0 8 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0109225995838642</threshold>
- <left_val>0.4523848891258240</left_val>
- <right_val>-0.0579033792018890</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 19 2 -1.</_>
- <_>0 9 19 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3356929197907448e-003</threshold>
- <left_val>0.3388097882270813</left_val>
- <right_val>-0.0644701123237610</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 18 4 -1.</_>
- <_>10 6 9 2 2.</_>
- <_>1 8 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0300145000219345</threshold>
- <left_val>-0.8283550143241882</left_val>
- <right_val>0.0246961191296577</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 8 18 -1.</_>
- <_>6 1 4 18 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3011043965816498</threshold>
- <left_val>-0.8342905044555664</left_val>
- <right_val>0.0143693098798394</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 11 10 12 -1.</_>
- <_>11 11 5 6 2.</_>
- <_>6 17 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2447918094694614e-003</threshold>
- <left_val>-0.1228173971176148</left_val>
- <right_val>0.0281341001391411</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 9 11 -1.</_>
- <_>6 7 3 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7825621701776981e-003</threshold>
- <left_val>-0.0692223086953163</left_val>
- <right_val>0.2581450939178467</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 6 14 -1.</_>
- <_>11 0 2 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0127267101779580</threshold>
- <left_val>0.1074585989117622</left_val>
- <right_val>-0.0765758231282234</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 12 7 -1.</_>
- <_>6 16 4 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7346940264105797e-003</threshold>
- <left_val>0.0441278591752052</left_val>
- <right_val>-0.3804568052291870</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 15 15 6 -1.</_>
- <_>7 15 5 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4512639977037907e-003</threshold>
- <left_val>-0.0429472103714943</left_val>
- <right_val>0.4607483148574829</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 8 7 -1.</_>
- <_>7 2 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6996050989255309e-004</threshold>
- <left_val>0.0669261217117310</left_val>
- <right_val>-0.2968584895133972</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 4 14 -1.</_>
- <_>9 0 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0538890995085239</threshold>
- <left_val>-1.</left_val>
- <right_val>3.9760880172252655e-003</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 4 14 -1.</_>
- <_>8 0 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0263220174238086e-003</threshold>
- <left_val>-0.1113893017172813</left_val>
- <right_val>0.1776421070098877</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 18 12 5 -1.</_>
- <_>11 18 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0393744409084320</threshold>
- <left_val>0.0129774296656251</left_val>
- <right_val>-0.6366993784904480</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 15 3 -1.</_>
- <_>1 19 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0187779795378447</threshold>
- <left_val>-0.0393345691263676</left_val>
- <right_val>0.4599016904830933</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 17 9 6 -1.</_>
- <_>12 17 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5851920470595360e-003</threshold>
- <left_val>-0.1091786995530129</left_val>
- <right_val>0.0562477894127369</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 9 6 -1.</_>
- <_>5 10 9 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0108577404171228</threshold>
- <left_val>-0.2017634063959122</left_val>
- <right_val>0.0906854569911957</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 10 4 9 -1.</_>
- <_>12 11 2 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0443992614746094</threshold>
- <left_val>1.9891490228474140e-003</left_val>
- <right_val>-0.9998115897178650</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 10 9 4 -1.</_>
- <_>7 11 9 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.7311190022155643e-003</threshold>
- <left_val>0.1469902992248535</left_val>
- <right_val>-0.1406953930854797</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 3 2 16 -1.</_>
- <_>15 11 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6609770245850086e-003</threshold>
- <left_val>0.1619053035974503</left_val>
- <right_val>-0.0555355995893478</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 5 6 -1.</_>
- <_>1 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3332851491868496e-003</threshold>
- <left_val>-0.3397156894207001</left_val>
- <right_val>0.0432091988623142</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 16 5 6 -1.</_>
- <_>12 19 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4786658691009507e-005</threshold>
- <left_val>0.1021749004721642</left_val>
- <right_val>-0.1028980985283852</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 3 14 -1.</_>
- <_>6 2 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0122559396550059</threshold>
- <left_val>0.4633125960826874</left_val>
- <right_val>-0.0388291291892529</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 17 9 6 -1.</_>
- <_>12 17 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0317283906042576</threshold>
- <left_val>-0.0109189599752426</left_val>
- <right_val>0.1925213038921356</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 6 9 -1.</_>
- <_>8 1 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.6054168641567230e-003</threshold>
- <left_val>0.0539623089134693</left_val>
- <right_val>-0.3383587002754211</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 10 5 -1.</_>
- <_>7 7 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4249579291790724e-003</threshold>
- <left_val>-0.0438760593533516</left_val>
- <right_val>0.2497778981924057</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 4 20 -1.</_>
- <_>6 0 2 10 2.</_>
- <_>8 10 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9957860931754112e-003</threshold>
- <left_val>0.1139840036630631</left_val>
- <right_val>-0.1792531013488770</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 10 3 9 -1.</_>
- <_>14 11 1 9 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0460425093770027</threshold>
- <left_val>2.0680939778685570e-003</left_val>
- <right_val>-0.8767393231391907</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 10 9 3 -1.</_>
- <_>5 11 9 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.4898271076381207e-003</threshold>
- <left_val>-0.0695956125855446</left_val>
- <right_val>0.2614254057407379</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 21 14 2 -1.</_>
- <_>5 21 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0052820434793830e-003</threshold>
- <left_val>0.0455016605556011</left_val>
- <right_val>-0.1239958032965660</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 3 14 -1.</_>
- <_>9 6 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.0297553688287735e-003</threshold>
- <left_val>-0.0712724104523659</left_val>
- <right_val>0.2291935980319977</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 4 9 -1.</_>
- <_>8 1 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0120284901931882</threshold>
- <left_val>0.0202303305268288</left_val>
- <right_val>-0.3405298888683319</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 4 9 -1.</_>
- <_>9 1 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3313730489462614e-003</threshold>
- <left_val>0.0872593373060226</left_val>
- <right_val>-0.2319519072771072</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 17 12 6 -1.</_>
- <_>13 17 6 3 2.</_>
- <_>7 20 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.5184362726286054e-004</threshold>
- <left_val>-0.2316880971193314</left_val>
- <right_val>0.0550221912562847</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 10 6 -1.</_>
- <_>8 4 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.6378661692142487e-003</threshold>
- <left_val>-0.0416555590927601</left_val>
- <right_val>0.4292826056480408</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 4 8 -1.</_>
- <_>15 4 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0135669801384211</threshold>
- <left_val>0.0456696599721909</left_val>
- <right_val>-0.2250124067068100</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 6 8 -1.</_>
- <_>5 5 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0336535014212132</threshold>
- <left_val>-0.0678615793585777</left_val>
- <right_val>0.3696761131286621</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 0 4 8 -1.</_>
- <_>15 4 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0603950209915638</threshold>
- <left_val>-0.9088736176490784</left_val>
- <right_val>3.8193699438124895e-003</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 4 8 -1.</_>
- <_>0 4 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3169209705665708e-003</threshold>
- <left_val>-0.1594133973121643</left_val>
- <right_val>0.1476655006408691</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 9 5 -1.</_>
- <_>10 0 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.7704064100980759e-003</threshold>
- <left_val>-0.1284841001033783</left_val>
- <right_val>0.0478323996067047</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 6 5 -1.</_>
- <_>6 0 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5100511051714420e-003</threshold>
- <left_val>0.1257490962743759</left_val>
- <right_val>-0.2196446955204010</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 21 14 2 -1.</_>
- <_>5 21 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0346629898995161e-003</threshold>
- <left_val>-0.1857440024614334</left_val>
- <right_val>0.0491770915687084</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 8 9 -1.</_>
- <_>9 3 4 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0132943904027343</threshold>
- <left_val>0.0914972424507141</left_val>
- <right_val>-0.2134393006563187</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 12 8 -1.</_>
- <_>12 1 6 4 2.</_>
- <_>6 5 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0400542505085468</threshold>
- <left_val>0.3177005946636200</left_val>
- <right_val>-0.0310807693749666</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 10 11 -1.</_>
- <_>9 10 5 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0254929903894663</threshold>
- <left_val>0.0388770401477814</left_val>
- <right_val>-0.4565899074077606</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 1 3 15 -1.</_>
- <_>13 1 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0380896888673306</threshold>
- <left_val>0.6661549806594849</left_val>
- <right_val>-0.0198953393846750</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 8 12 -1.</_>
- <_>8 3 4 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2130831927061081</threshold>
- <left_val>-0.8653417825698853</left_val>
- <right_val>0.0208984296768904</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 10 8 -1.</_>
- <_>8 2 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0897275432944298</threshold>
- <left_val>0.2572591900825501</left_val>
- <right_val>-0.0462616682052612</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 19 6 -1.</_>
- <_>0 6 19 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0250757001340389</threshold>
- <left_val>0.0412595085799694</left_val>
- <right_val>-0.3766664862632752</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 11 16 -1.</_>
- <_>4 4 11 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0233661495149136</threshold>
- <left_val>-0.0722028315067291</left_val>
- <right_val>0.2473703026771545</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 6 5 -1.</_>
- <_>7 1 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8038409072905779e-004</threshold>
- <left_val>-0.0794735476374626</left_val>
- <right_val>0.2247823029756546</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 14 18 -1.</_>
- <_>10 5 7 9 2.</_>
- <_>3 14 7 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2364194095134735e-003</threshold>
- <left_val>0.0512110106647015</left_val>
- <right_val>-0.1332865953445435</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 5 6 -1.</_>
- <_>1 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0539227798581123</threshold>
- <left_val>0.0171083994209766</left_val>
- <right_val>-0.8925604224205017</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 4 14 -1.</_>
- <_>15 0 2 7 2.</_>
- <_>13 7 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7015779633074999e-003</threshold>
- <left_val>-0.1840559989213944</left_val>
- <right_val>0.1283039003610611</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 4 14 -1.</_>
- <_>2 0 2 7 2.</_>
- <_>4 7 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0165056902915239</threshold>
- <left_val>0.6223918199539185</left_val>
- <right_val>-0.0264136902987957</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 2 2 10 -1.</_>
- <_>10 2 1 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.8418730469420552e-003</threshold>
- <left_val>-0.1264680027961731</left_val>
- <right_val>0.0486908517777920</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 9 3 -1.</_>
- <_>8 2 9 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.1953629590570927e-003</threshold>
- <left_val>0.0456537008285522</left_val>
- <right_val>-0.3251998126506805</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 10 6 -1.</_>
- <_>11 2 5 3 2.</_>
- <_>6 5 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0785308703780174e-003</threshold>
- <left_val>0.0407032594084740</left_val>
- <right_val>-0.2062076926231384</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 9 6 -1.</_>
- <_>1 14 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0687040202319622e-003</threshold>
- <left_val>-0.0764562487602234</left_val>
- <right_val>0.2586740851402283</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 10 6 -1.</_>
- <_>11 2 5 3 2.</_>
- <_>6 5 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0118923196569085</threshold>
- <left_val>-0.2236621975898743</left_val>
- <right_val>0.0308554098010063</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 10 6 -1.</_>
- <_>3 2 5 3 2.</_>
- <_>8 5 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4257500190287828e-003</threshold>
- <left_val>-0.0715978890657425</left_val>
- <right_val>0.2610881924629211</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 5 20 -1.</_>
- <_>7 5 5 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0119903795421124</threshold>
- <left_val>0.2267847955226898</left_val>
- <right_val>-0.1030550971627235</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 10 12 7 -1.</_>
- <_>5 10 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0227722004055977</threshold>
- <left_val>-0.2377014011144638</left_val>
- <right_val>0.0766308531165123</right_val></_></_></trees>
- <stage_threshold>-30.6944007873535160</stage_threshold>
- <parent>24</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 26 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 14 4 -1.</_>
- <_>0 18 7 2 2.</_>
- <_>7 20 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3625920768827200e-003</threshold>
- <left_val>-0.1826844066381455</left_val>
- <right_val>0.1593551933765411</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 7 3 15 -1.</_>
- <_>10 7 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4937757775187492e-003</threshold>
- <left_val>-0.0894381925463676</left_val>
- <right_val>0.2842231094837189</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 6 5 -1.</_>
- <_>9 8 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.8971032528206706e-004</threshold>
- <left_val>0.0956655889749527</left_val>
- <right_val>-0.1940706968307495</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 4 2 17 -1.</_>
- <_>9 4 1 17 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6789100375026464e-003</threshold>
- <left_val>-0.1015266999602318</left_val>
- <right_val>0.1786416023969650</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 2 17 -1.</_>
- <_>9 4 1 17 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0554129518568516e-003</threshold>
- <left_val>-0.2333766072988510</left_val>
- <right_val>0.1227973997592926</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 18 9 5 -1.</_>
- <_>11 18 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0177422501146793</threshold>
- <left_val>0.1919087022542954</left_val>
- <right_val>-0.0317107290029526</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 18 9 5 -1.</_>
- <_>5 18 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0996970599517226e-004</threshold>
- <left_val>-0.1934470981359482</left_val>
- <right_val>0.0995416790246964</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 18 6 5 -1.</_>
- <_>12 18 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7737619131803513e-003</threshold>
- <left_val>-0.2029885053634644</left_val>
- <right_val>0.0793160125613213</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 15 6 5 -1.</_>
- <_>8 15 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4448439469560981e-003</threshold>
- <left_val>-0.0598114915192127</left_val>
- <right_val>0.4137539863586426</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 6 10 -1.</_>
- <_>15 0 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.1589159518480301e-003</threshold>
- <left_val>-0.0929341092705727</left_val>
- <right_val>0.0775753483176231</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 14 10 9 -1.</_>
- <_>2 17 10 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.7764004021883011e-003</threshold>
- <left_val>0.0530273914337158</left_val>
- <right_val>-0.3643518090248108</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 0 6 10 -1.</_>
- <_>15 0 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8739850968122482e-003</threshold>
- <left_val>0.1272812038660049</left_val>
- <right_val>-0.0321823507547379</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 6 10 -1.</_>
- <_>2 0 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3552028946578503e-003</threshold>
- <left_val>-0.1447207033634186</left_val>
- <right_val>0.1417167931795120</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 5 3 12 -1.</_>
- <_>12 5 3 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1213203966617584</threshold>
- <left_val>0.1528424024581909</left_val>
- <right_val>-0.0269485209137201</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 18 7 4 -1.</_>
- <_>6 20 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5531532056629658e-003</threshold>
- <left_val>0.1015343964099884</left_val>
- <right_val>-0.1871580034494400</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 7 4 12 -1.</_>
- <_>15 8 2 12 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.8978552222251892e-003</threshold>
- <left_val>0.0280349906533957</left_val>
- <right_val>-0.1422438025474548</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 12 4 -1.</_>
- <_>4 8 12 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.8711129669100046e-003</threshold>
- <left_val>0.1512988954782486</left_val>
- <right_val>-0.1391292959451675</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>14 13 5 9 -1.</_>
- <_>14 16 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0418676994740963</threshold>
- <left_val>0.0182305499911308</left_val>
- <right_val>-0.5677195787429810</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 5 9 -1.</_>
- <_>0 16 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.4031058941036463e-004</threshold>
- <left_val>0.1539203971624374</left_val>
- <right_val>-0.1211211010813713</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 14 7 6 -1.</_>
- <_>12 16 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6289851414039731e-004</threshold>
- <left_val>-0.0799135863780975</left_val>
- <right_val>0.0700974836945534</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 6 6 -1.</_>
- <_>1 19 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4498889474198222e-004</threshold>
- <left_val>0.1678467988967896</left_val>
- <right_val>-0.1380593031644821</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 9 4 -1.</_>
- <_>7 2 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2194290068000555e-003</threshold>
- <left_val>0.0584531389176846</left_val>
- <right_val>-0.1237479001283646</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 18 3 -1.</_>
- <_>0 10 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5759059935808182e-003</threshold>
- <left_val>0.2261949926614761</left_val>
- <right_val>-0.0862514376640320</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 17 9 6 -1.</_>
- <_>12 17 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0589898116886616</threshold>
- <left_val>6.9204131141304970e-003</left_val>
- <right_val>-0.7336757779121399</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 14 15 9 -1.</_>
- <_>7 17 5 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2788914144039154</threshold>
- <left_val>0.4672810137271881</left_val>
- <right_val>-0.0386128611862659</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 13 8 8 -1.</_>
- <_>9 17 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3824000060558319e-003</threshold>
- <left_val>-0.1693985015153885</left_val>
- <right_val>0.0613945387303829</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 2 14 -1.</_>
- <_>5 9 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9165568351745605e-004</threshold>
- <left_val>-0.2486791014671326</left_val>
- <right_val>0.0765902772545815</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 10 4 13 -1.</_>
- <_>12 10 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0120718898251653</threshold>
- <left_val>8.9360373094677925e-003</left_val>
- <right_val>-0.2702870965003967</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 4 13 -1.</_>
- <_>5 10 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8453561137430370e-004</threshold>
- <left_val>0.0994883030653000</left_val>
- <right_val>-0.2152262926101685</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 14 2 -1.</_>
- <_>5 5 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2118990309536457e-003</threshold>
- <left_val>0.0407863892614841</left_val>
- <right_val>-0.1156380996108055</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 14 2 -1.</_>
- <_>7 5 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0209608208388090</threshold>
- <left_val>-0.0313559286296368</left_val>
- <right_val>0.7100617885589600</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 12 6 10 -1.</_>
- <_>16 12 3 5 2.</_>
- <_>13 17 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9021030534058809e-003</threshold>
- <left_val>-0.1746001988649368</left_val>
- <right_val>0.0407753512263298</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 6 10 -1.</_>
- <_>0 12 3 5 2.</_>
- <_>3 17 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5169141230871901e-005</threshold>
- <left_val>0.1210518032312393</left_val>
- <right_val>-0.1661822050809860</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 8 5 12 -1.</_>
- <_>12 11 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0691956728696823</threshold>
- <left_val>7.6447450555860996e-003</left_val>
- <right_val>-0.5921157002449036</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 5 12 -1.</_>
- <_>2 11 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1615910334512591e-003</threshold>
- <left_val>0.2258497029542923</left_val>
- <right_val>-0.0917727723717690</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 7 4 -1.</_>
- <_>6 10 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5347518607741222e-005</threshold>
- <left_val>-0.2086371928453445</left_val>
- <right_val>0.0903640612959862</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 14 3 -1.</_>
- <_>0 18 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0190451499074697</threshold>
- <left_val>0.4234400987625122</left_val>
- <right_val>-0.0460181795060635</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 7 2 15 -1.</_>
- <_>12 7 1 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.1966438293457031e-003</threshold>
- <left_val>-0.0283696707338095</left_val>
- <right_val>0.3080070912837982</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 9 6 -1.</_>
- <_>4 17 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5357000413350761e-004</threshold>
- <left_val>-0.2897196114063263</left_val>
- <right_val>0.0753742232918739</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 6 9 7 -1.</_>
- <_>13 9 3 7 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1081790998578072</threshold>
- <left_val>-0.0142864296212792</left_val>
- <right_val>0.7282333970069885</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 7 9 -1.</_>
- <_>6 9 7 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.5140778422355652e-003</threshold>
- <left_val>-0.1885464936494827</left_val>
- <right_val>0.1137854978442192</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 10 4 -1.</_>
- <_>5 10 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5264509283006191e-003</threshold>
- <left_val>0.0708340182900429</left_val>
- <right_val>-0.1839759945869446</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 6 14 -1.</_>
- <_>0 13 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4198831096291542e-003</threshold>
- <left_val>-0.1144948005676270</left_val>
- <right_val>0.1912039071321487</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 18 22 -1.</_>
- <_>10 1 9 11 2.</_>
- <_>1 12 9 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1931422054767609</threshold>
- <left_val>0.0140662295743823</left_val>
- <right_val>-0.6977211833000183</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 17 3 -1.</_>
- <_>1 6 17 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0406702086329460</threshold>
- <left_val>-0.0242790896445513</left_val>
- <right_val>0.7882817983627319</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>13 12 6 5 -1.</_>
- <_>13 12 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1965131163597107e-003</threshold>
- <left_val>-0.2010557949542999</left_val>
- <right_val>0.0510505102574825</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 16 3 -1.</_>
- <_>0 6 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7381771728396416e-003</threshold>
- <left_val>0.2522231042385101</left_val>
- <right_val>-0.0734292268753052</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 6 6 17 -1.</_>
- <_>12 6 3 17 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0717736408114433</threshold>
- <left_val>-9.0609909966588020e-003</left_val>
- <right_val>0.9294689893722534</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 6 17 -1.</_>
- <_>4 6 3 17 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9466611603274941e-004</threshold>
- <left_val>0.1062569022178650</left_val>
- <right_val>-0.1916245967149735</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 18 2 -1.</_>
- <_>1 15 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6388010010123253e-003</threshold>
- <left_val>0.0633307173848152</left_val>
- <right_val>-0.2040408998727799</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 2 16 -1.</_>
- <_>1 5 1 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1406691414304078e-004</threshold>
- <left_val>0.1799051016569138</left_val>
- <right_val>-0.0984959602355957</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>15 12 4 10 -1.</_>
- <_>15 17 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8691151207312942e-004</threshold>
- <left_val>0.0850712582468987</left_val>
- <right_val>-0.0769745409488678</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 16 3 -1.</_>
- <_>1 6 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0376359568908811e-003</threshold>
- <left_val>-0.1109630987048149</left_val>
- <right_val>0.1598507016897202</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 9 12 -1.</_>
- <_>6 12 9 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6373570542782545e-003</threshold>
- <left_val>0.1112873032689095</left_val>
- <right_val>-0.1235273033380508</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 13 4 8 -1.</_>
- <_>3 17 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.3773309122771025e-004</threshold>
- <left_val>0.1289086043834686</left_val>
- <right_val>-0.1429457962512970</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 13 8 8 -1.</_>
- <_>9 17 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0168414507061243</threshold>
- <left_val>-0.2423107028007507</left_val>
- <right_val>0.0205974709242582</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 8 10 -1.</_>
- <_>5 0 4 5 2.</_>
- <_>9 5 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0305906906723976</threshold>
- <left_val>0.3351395130157471</left_val>
- <right_val>-0.0471835695207119</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 18 6 -1.</_>
- <_>10 4 9 3 2.</_>
- <_>1 7 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0102145401760936</threshold>
- <left_val>0.0554971992969513</left_val>
- <right_val>-0.2340593934059143</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 9 6 -1.</_>
- <_>3 18 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1853770120069385e-003</threshold>
- <left_val>0.0920741632580757</left_val>
- <right_val>-0.1734714061021805</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 17 14 4 -1.</_>
- <_>3 18 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1729650432243943e-003</threshold>
- <left_val>-0.0840759426355362</left_val>
- <right_val>0.2068953067064285</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 9 6 -1.</_>
- <_>2 5 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0108941700309515</threshold>
- <left_val>0.0564759410917759</left_val>
- <right_val>-0.3167718052864075</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 19 3 -1.</_>
- <_>0 4 19 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0437049679458141e-003</threshold>
- <left_val>0.1879636943340302</left_val>
- <right_val>-0.0988890230655670</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 16 4 -1.</_>
- <_>1 4 16 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7676038704812527e-003</threshold>
- <left_val>-0.2518925964832306</left_val>
- <right_val>0.0751082673668861</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 6 14 -1.</_>
- <_>14 0 3 7 2.</_>
- <_>11 7 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0696244835853577</threshold>
- <left_val>-0.0176613796502352</left_val>
- <right_val>0.4339039921760559</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 9 6 -1.</_>
- <_>3 17 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1853429391048849e-004</threshold>
- <left_val>-0.2937808036804199</left_val>
- <right_val>0.0581624209880829</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 16 8 7 -1.</_>
- <_>9 16 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7543470021337271e-003</threshold>
- <left_val>0.0268584899604321</left_val>
- <right_val>-0.1522563993930817</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 14 10 5 -1.</_>
- <_>8 14 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2951970566064119e-003</threshold>
- <left_val>-0.0717691183090210</left_val>
- <right_val>0.3810122907161713</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 9 3 14 -1.</_>
- <_>13 9 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0205491408705711</threshold>
- <left_val>-0.0231714304536581</left_val>
- <right_val>0.2722831964492798</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 3 14 -1.</_>
- <_>5 9 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7475480455905199e-003</threshold>
- <left_val>0.0672073066234589</left_val>
- <right_val>-0.2716295123100281</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 9 6 14 -1.</_>
- <_>13 9 3 7 2.</_>
- <_>10 16 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2633951418101788e-003</threshold>
- <left_val>-0.1393160969018936</left_val>
- <right_val>0.1182122975587845</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 6 5 -1.</_>
- <_>9 0 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2199261263012886e-003</threshold>
- <left_val>-0.3321351110935211</left_val>
- <right_val>0.0473291911184788</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 6 8 -1.</_>
- <_>7 4 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.9096707999706268e-003</threshold>
- <left_val>-0.0697067826986313</left_val>
- <right_val>0.1995428055524826</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 11 21 -1.</_>
- <_>2 7 11 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1033437997102737</threshold>
- <left_val>0.4241856038570404</left_val>
- <right_val>-0.0398962683975697</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 4 12 -1.</_>
- <_>8 12 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0133223198354244</threshold>
- <left_val>-0.2550886869430542</left_val>
- <right_val>0.0413510315120220</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 6 14 -1.</_>
- <_>3 9 3 7 2.</_>
- <_>6 16 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7832260346040130e-003</threshold>
- <left_val>-0.1766443997621536</left_val>
- <right_val>0.1033623963594437</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 8 7 -1.</_>
- <_>12 7 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0632823333144188</threshold>
- <left_val>0.0123956799507141</left_val>
- <right_val>-0.4635525047779083</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 8 7 -1.</_>
- <_>3 7 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1022358238697052e-003</threshold>
- <left_val>0.4067063927650452</left_val>
- <right_val>-0.0501934513449669</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 9 20 -1.</_>
- <_>8 2 3 20 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0398915298283100</threshold>
- <left_val>0.0372191295027733</left_val>
- <right_val>-0.5569645166397095</right_val></_></_></trees>
- <stage_threshold>-30.6646995544433590</stage_threshold>
- <parent>25</parent>
- <next>-1</next></_></stages></haarcascade_lowerbody>
- </opencv_storage>
|