12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118 |
- <?xml version="1.0"?>
- <!--
- 14x28 fullbody detector (see the detailed description below).
- //////////////////////////////////////////////////////////////////////////
- | Contributors License Agreement
- | IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- | By downloading, copying, installing or using the software you agree
- | to this license.
- | If you do not agree to this license, do not download, install,
- | copy or use the software.
- |
- | Copyright (c) 2004, Hannes Kruppa and Bernt Schiele (ETH Zurich, Switzerland).
- | All rights reserved.
- |
- | Redistribution and use in source and binary forms, with or without
- | modification, are permitted provided that the following conditions are
- | met:
- |
- | * Redistributions of source code must retain the above copyright
- | notice, this list of conditions and the following disclaimer.
- | * Redistributions in binary form must reproduce the above
- | copyright notice, this list of conditions and the following
- | disclaimer in the documentation and/or other materials provided
- | with the distribution.
- | * The name of Contributor may not used to endorse or promote products
- | derived from this software without specific prior written permission.
- |
- | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
- | CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Back to
- | Top
- //////////////////////////////////////////////////////////////////////////
- "Haar"-based Detectors For Pedestrian Detection
- ===============================================
- by Hannes Kruppa and Bernt Schiele, ETH Zurich, Switzerland
- This archive provides the following three detectors:
- - upper body detector (most fun, useful in many scenarios!)
- - lower body detector
- - full body detector
- These detectors have been successfully applied to pedestrian detection
- in still images. They can be directly passed as parameters to the
- program HaarFaceDetect.
- NOTE: These detectors deal with frontal and backside views but not
- with side views (also see "Known limitations" below).
- RESEARCHERS:
- If you are using any of the detectors or involved ideas please cite
- this paper (available at www.vision.ethz.ch/publications/):
- @InProceedings{Kruppa03-bmvc,
- author = "Hannes Kruppa, Modesto Castrillon-Santana and Bernt Schiele",
- title = "Fast and Robust Face Finding via Local Context."
- booktitle = "Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance"
- year = "2003",
- month = "October"
- }
- COMMERCIAL:
- If you have any commercial interest in this work please contact
- hkruppa@inf.ethz.ch
- ADDITIONAL INFORMATION
- ======================
- Check out the demo movie, e.g. using mplayer or any (Windows/Linux-) player
- that can play back .mpg movies.
- Under Linux that's:
- > ffplay demo.mpg
- or:
- > mplayer demo.mpg
- The movie shows a person walking towards the camera in a realistic
- indoor setting. Using ffplay or mplayer you can pause and continue the
- movie by pressing the space bar.
- Detections coming from the different detectors are visualized using
- different line styles:
- upper body : dotted line
- lower body : dashed line
- full body : solid line
- You will notice that successful detections containing the target do
- not sit tightly on the body but also include some of the background
- left and right. This is not a bug but accurately reflects the
- employed training data which also includes portions of the background
- to ensure proper silhouette representation. If you want to get a
- feeling for the training data check out the CBCL data set:
- http://www.ai.mit.edu/projects/cbcl/software-datasets/PedestrianData.html
- There is also a small number of false alarms in this sequence.
- NOTE: This is per frame detection, not tracking (which is also one of
- the reasons why it is not mislead by the person's shadow on the back
- wall).
- On an Intel Xeon 1.7GHz machine the detectors operate at something
- between 6Hz to 14 Hz (on 352 x 288 frames per second) depending on the
- detector. The detectors work as well on much lower image resolutions
- which is always an interesting possibility for speed-ups or
- "coarse-to-fine" search strategies.
- Additional information e.g. on training parameters, detector
- combination, detecting other types of objects (e.g. cars) etc. is
- available in my PhD thesis report (available end of June). Check out
- www.vision.ethz.ch/kruppa/
- KNOWN LIMITATIONS
- ==================
- 1) The detectors only support frontal and back views but not sideviews.
- Sideviews are trickier and it makes a lot of sense to include additional
- modalities for their detection, e.g. motion information. I recommend
- Viola and Jones' ICCV 2003 paper if this further interests you.
- 2) Don't expect these detectors to be as accurate as a frontal face detector.
- A frontal face as a pattern is pretty distinct with respect to other
- patterns occurring in the world (i.e. image "background"). This is not so
- for upper, lower and especially full bodies, because they have to rely
- on fragile silhouette information rather than internal (facial) features.
- Still, we found especially the upper body detector to perform amazingly well.
- In contrast to a face detector these detectors will also work at very low
- image resolutions
- Acknowledgements
- ================
- Thanks to Martin Spengler, ETH Zurich, for providing the demo movie.
- -->
- <opencv_storage>
- <haarcascade_fullbody type_id="opencv-haar-classifier">
- <size>14 28</size>
- <stages>
- <_>
- <!-- stage 0 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 12 21 -1.</_>
- <_>5 5 4 21 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0558205693960190</threshold>
- <left_val>0.5869792103767395</left_val>
- <right_val>-0.6281142234802246</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 3 26 -1.</_>
- <_>9 15 3 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0388611815869808</threshold>
- <left_val>-0.7091681957244873</left_val>
- <right_val>0.2682121098041534</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 12 23 -1.</_>
- <_>5 4 4 23 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2674087882041931</threshold>
- <left_val>0.8308296203613281</left_val>
- <right_val>-0.2259958982467651</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 12 9 -1.</_>
- <_>4 7 6 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0964197367429733</threshold>
- <left_val>-0.1169784963130951</left_val>
- <right_val>0.8725455999374390</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 3 16 -1.</_>
- <_>3 20 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0107987103983760</threshold>
- <left_val>-0.5721974968910217</left_val>
- <right_val>0.2532565891742706</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 6 6 -1.</_>
- <_>4 11 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0113656399771571</threshold>
- <left_val>0.1965083032846451</left_val>
- <right_val>-0.7274463772773743</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 25 12 3 -1.</_>
- <_>5 25 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0216919044032693e-004</threshold>
- <left_val>0.2443515956401825</left_val>
- <right_val>-0.5197358131408691</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 25 8 3 -1.</_>
- <_>6 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0284624807536602</threshold>
- <left_val>-0.8360729217529297</left_val>
- <right_val>0.1115804016590118</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 4 12 -1.</_>
- <_>4 2 2 6 2.</_>
- <_>6 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3473170110955834e-003</threshold>
- <left_val>-0.3840653896331787</left_val>
- <right_val>0.2676798999309540</right_val></_></_></trees>
- <stage_threshold>-1.2288980484008789</stage_threshold>
- <parent>-1</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 1 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 8 11 -1.</_>
- <_>5 15 4 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0107432203367352</threshold>
- <left_val>0.4774732887744904</left_val>
- <right_val>-0.6239293217658997</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 6 6 -1.</_>
- <_>8 9 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3188569573685527e-003</threshold>
- <left_val>0.2124266028404236</left_val>
- <right_val>-0.2416270971298218</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 6 6 -1.</_>
- <_>4 9 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5571161210536957e-003</threshold>
- <left_val>0.3614785969257355</left_val>
- <right_val>-0.3725171983242035</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 5 28 -1.</_>
- <_>8 14 5 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1389341056346893</threshold>
- <left_val>-0.6790050268173218</left_val>
- <right_val>0.1128031015396118</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 24 10 4 -1.</_>
- <_>7 24 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0264658294618130</threshold>
- <left_val>0.1247496977448463</left_val>
- <right_val>-0.8285233974456787</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 8 11 -1.</_>
- <_>5 15 4 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0893868431448936</threshold>
- <left_val>0.7427176237106323</left_val>
- <right_val>-0.1701931953430176</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 25 14 3 -1.</_>
- <_>7 25 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0213354192674160</threshold>
- <left_val>-0.7175018787384033</left_val>
- <right_val>0.1556618064641953</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 12 13 -1.</_>
- <_>5 11 4 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0557091012597084</threshold>
- <left_val>-0.1531004011631012</left_val>
- <right_val>0.7180476784706116</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 12 21 -1.</_>
- <_>5 9 4 7 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.6970995068550110</threshold>
- <left_val>0.8115419149398804</left_val>
- <right_val>-0.1088638976216316</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 0 3 28 -1.</_>
- <_>10 14 3 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2020599991083145</threshold>
- <left_val>0.0763984173536301</left_val>
- <right_val>-0.7301151156425476</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 3 28 -1.</_>
- <_>1 14 3 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0718826577067375</threshold>
- <left_val>-0.7148858904838562</left_val>
- <right_val>0.1651764959096909</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 6 8 -1.</_>
- <_>8 5 3 4 2.</_>
- <_>5 9 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0192287601530552</threshold>
- <left_val>-0.3986836969852448</left_val>
- <right_val>0.0405572392046452</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 6 8 -1.</_>
- <_>3 5 3 4 2.</_>
- <_>6 9 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1500229593366385e-003</threshold>
- <left_val>-0.3826077878475189</left_val>
- <right_val>0.3185507953166962</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 16 4 12 -1.</_>
- <_>12 16 2 6 2.</_>
- <_>10 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0232527796179056</threshold>
- <left_val>0.0543904006481171</left_val>
- <right_val>-0.7066999077796936</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 6 4 -1.</_>
- <_>4 10 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2618120894767344e-004</threshold>
- <left_val>0.2261060029268265</left_val>
- <right_val>-0.4070987999439240</right_val></_></_></trees>
- <stage_threshold>-1.0969949960708618</stage_threshold>
- <parent>0</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 2 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 8 21 -1.</_>
- <_>5 5 4 21 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1291020065546036</threshold>
- <left_val>0.7600312829017639</left_val>
- <right_val>-0.2340579032897949</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 12 12 -1.</_>
- <_>7 15 6 6 2.</_>
- <_>1 21 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0674492567777634</threshold>
- <left_val>0.1717952936887741</left_val>
- <right_val>-0.8436477780342102</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 25 12 3 -1.</_>
- <_>6 25 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0126632703468204</threshold>
- <left_val>0.2291321009397507</left_val>
- <right_val>-0.7307245731353760</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 14 3 8 -1.</_>
- <_>8 14 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.2741331271827221e-003</threshold>
- <left_val>0.0624204799532890</left_val>
- <right_val>-0.4098593890666962</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 25 8 3 -1.</_>
- <_>4 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0231439508497715</threshold>
- <left_val>-0.8397182822227478</left_val>
- <right_val>0.2011574953794479</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 24 12 4 -1.</_>
- <_>5 24 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5371038615703583e-004</threshold>
- <left_val>0.1536941975355148</left_val>
- <right_val>-0.4403811097145081</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 4 6 -1.</_>
- <_>3 18 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5239803194999695e-003</threshold>
- <left_val>-0.6318680047988892</left_val>
- <right_val>0.1625023037195206</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 4 7 -1.</_>
- <_>8 8 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0283076707273722</threshold>
- <left_val>-0.0725999698042870</left_val>
- <right_val>0.3791998922824860</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 4 7 -1.</_>
- <_>4 8 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0451480187475681</threshold>
- <left_val>0.7449362874031067</left_val>
- <right_val>-0.1558171063661575</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 12 18 -1.</_>
- <_>1 3 6 18 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1001473963260651</threshold>
- <left_val>0.1794963926076889</left_val>
- <right_val>-0.6464408040046692</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 20 4 8 -1.</_>
- <_>3 20 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3245721869170666e-003</threshold>
- <left_val>0.1776389926671982</left_val>
- <right_val>-0.5765405893325806</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 10 7 18 -1.</_>
- <_>6 19 7 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0118756704032421</threshold>
- <left_val>-0.3112972080707550</left_val>
- <right_val>0.1632139980792999</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 3 13 -1.</_>
- <_>5 8 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0254790391772985</threshold>
- <left_val>0.6269248127937317</left_val>
- <right_val>-0.1133375018835068</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 22 4 6 -1.</_>
- <_>10 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9196523874998093e-003</threshold>
- <left_val>-0.7762442827224731</left_val>
- <right_val>0.1542761027812958</right_val></_></_></trees>
- <stage_threshold>-1.2285970449447632</stage_threshold>
- <parent>1</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 3 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 12 27 -1.</_>
- <_>5 9 4 9 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.8580927848815918</threshold>
- <left_val>0.7879683971405029</left_val>
- <right_val>-0.2213554978370667</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 20 12 7 -1.</_>
- <_>5 20 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6491119749844074e-003</threshold>
- <left_val>0.2567340135574341</left_val>
- <right_val>-0.4319424033164978</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 25 10 3 -1.</_>
- <_>7 25 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0258823093026876</threshold>
- <left_val>-0.8755123019218445</left_val>
- <right_val>0.0883856266736984</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 26 14 2 -1.</_>
- <_>0 26 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7666151076555252e-003</threshold>
- <left_val>-0.4702236950397492</left_val>
- <right_val>0.2280080020427704</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 8 9 -1.</_>
- <_>5 15 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0837296992540360</threshold>
- <left_val>0.6338573098182678</left_val>
- <right_val>-0.1488831937313080</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 23 6 5 -1.</_>
- <_>8 23 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0406857393682003</threshold>
- <left_val>-0.9393178820610046</left_val>
- <right_val>0.0105989398434758</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 26 14 2 -1.</_>
- <_>7 26 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0759920850396156e-003</threshold>
- <left_val>-0.4555442035198212</left_val>
- <right_val>0.1786437034606934</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 10 2 18 -1.</_>
- <_>8 19 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3427829146385193e-003</threshold>
- <left_val>-0.2143428027629852</left_val>
- <right_val>0.1553142070770264</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 4 12 -1.</_>
- <_>4 4 2 6 2.</_>
- <_>6 10 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7649151161313057e-004</threshold>
- <left_val>-0.3334816098213196</left_val>
- <right_val>0.2278023958206177</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 24 9 4 -1.</_>
- <_>7 24 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0169418398290873</threshold>
- <left_val>0.0741408169269562</left_val>
- <right_val>-0.5626205205917358</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 12 15 -1.</_>
- <_>5 8 4 5 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4755898118019104</threshold>
- <left_val>-0.1086113005876541</left_val>
- <right_val>0.8298525810241699</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 16 2 12 -1.</_>
- <_>11 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8000627905130386e-003</threshold>
- <left_val>0.1324903070926666</left_val>
- <right_val>-0.5162039995193481</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 7 16 -1.</_>
- <_>2 12 7 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0744775608181953</threshold>
- <left_val>-0.5554556846618652</left_val>
- <right_val>0.1234432011842728</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 4 6 -1.</_>
- <_>8 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5143009154126048e-004</threshold>
- <left_val>0.0681907534599304</left_val>
- <right_val>-0.1361685991287231</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 8 6 -1.</_>
- <_>3 11 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3454021476209164e-003</threshold>
- <left_val>0.1367851048707962</left_val>
- <right_val>-0.5364512205123901</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 6 8 -1.</_>
- <_>10 8 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0154712796211243</threshold>
- <left_val>0.2618063986301422</left_val>
- <right_val>-0.1054581031203270</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 6 7 -1.</_>
- <_>2 8 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6055500172078609e-003</threshold>
- <left_val>-0.2574635148048401</left_val>
- <right_val>0.2879593074321747</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 25 12 3 -1.</_>
- <_>6 25 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4552858667448163e-004</threshold>
- <left_val>0.1009993031620979</left_val>
- <right_val>-0.2611967921257019</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 25 12 3 -1.</_>
- <_>4 25 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0331389009952545</threshold>
- <left_val>-0.8377956748008728</left_val>
- <right_val>0.1132768988609314</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 12 4 -1.</_>
- <_>1 7 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0355918891727924</threshold>
- <left_val>0.0823360905051231</left_val>
- <right_val>-0.6250566244125366</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 14 12 -1.</_>
- <_>7 2 7 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2083403021097183</threshold>
- <left_val>0.0695244371891022</left_val>
- <right_val>-0.8688114881515503</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 19 14 6 -1.</_>
- <_>7 19 7 3 2.</_>
- <_>0 22 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0281654000282288</threshold>
- <left_val>-0.5979984998703003</left_val>
- <right_val>0.0803299024701118</right_val></_></_></trees>
- <stage_threshold>-1.1200269460678101</stage_threshold>
- <parent>2</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 4 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 14 12 6 -1.</_>
- <_>5 14 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0267407093197107</threshold>
- <left_val>0.3891242146492004</left_val>
- <right_val>-0.4982767999172211</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 24 12 4 -1.</_>
- <_>5 24 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2516999850049615e-003</threshold>
- <left_val>0.1312343031167984</left_val>
- <right_val>-0.3636899888515472</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 4 14 -1.</_>
- <_>2 1 2 7 2.</_>
- <_>4 8 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0416345112025738</threshold>
- <left_val>0.5744475126266480</left_val>
- <right_val>-0.1393287926912308</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 3 4 6 -1.</_>
- <_>10 3 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0100965797901154</threshold>
- <left_val>0.0990737974643707</left_val>
- <right_val>-0.2295698970556259</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 6 4 -1.</_>
- <_>4 3 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0190903991460800</threshold>
- <left_val>-0.5515310764312744</left_val>
- <right_val>0.1511006951332092</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 14 8 -1.</_>
- <_>0 16 7 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0314810685813427</threshold>
- <left_val>-0.4588426947593689</left_val>
- <right_val>0.1757954955101013</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 3 12 -1.</_>
- <_>6 16 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0176875498145819</threshold>
- <left_val>0.4471183121204376</left_val>
- <right_val>-0.1529293060302734</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 4 7 -1.</_>
- <_>7 15 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3685659766197205e-003</threshold>
- <left_val>0.1218549013137817</left_val>
- <right_val>-0.1668857038021088</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 4 8 -1.</_>
- <_>5 15 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.9326845481991768e-003</threshold>
- <left_val>-0.1333369016647339</left_val>
- <right_val>0.6375334262847900</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 17 4 8 -1.</_>
- <_>9 17 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0706309266388416e-003</threshold>
- <left_val>-0.1122028976678848</left_val>
- <right_val>0.0698243528604507</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 4 8 -1.</_>
- <_>3 17 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9803090989589691e-003</threshold>
- <left_val>-0.5184289813041687</left_val>
- <right_val>0.1609919965267181</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 18 4 7 -1.</_>
- <_>9 18 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9967839363962412e-003</threshold>
- <left_val>0.0410653389990330</left_val>
- <right_val>-0.1945585012435913</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 4 7 -1.</_>
- <_>3 18 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8641549181193113e-003</threshold>
- <left_val>0.1667324006557465</left_val>
- <right_val>-0.4356977939605713</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 4 6 -1.</_>
- <_>7 5 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.8349428474903107e-003</threshold>
- <left_val>-0.1716264039278030</left_val>
- <right_val>0.1481806039810181</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 6 4 -1.</_>
- <_>7 5 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0431584902107716</threshold>
- <left_val>0.0832035094499588</left_val>
- <right_val>-0.7782185077667236</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 26 12 2 -1.</_>
- <_>2 26 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.6560080051422119e-003</threshold>
- <left_val>0.0847408026456833</left_val>
- <right_val>-0.4973815083503723</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 3 12 -1.</_>
- <_>5 7 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1110988929867744e-003</threshold>
- <left_val>0.2582714855670929</left_val>
- <right_val>-0.2555203139781952</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 12 11 -1.</_>
- <_>4 7 6 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1187030971050263</threshold>
- <left_val>-0.0909442380070686</left_val>
- <right_val>0.7228621244430542</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 13 8 4 -1.</_>
- <_>6 13 4 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0168759692460299</threshold>
- <left_val>0.1262917071580887</left_val>
- <right_val>-0.5520529747009277</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 22 6 4 -1.</_>
- <_>5 22 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0887029930017889e-004</threshold>
- <left_val>0.0816487967967987</left_val>
- <right_val>-0.1693702042102814</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 26 14 2 -1.</_>
- <_>7 26 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8222990222275257e-003</threshold>
- <left_val>0.1641130000352860</left_val>
- <right_val>-0.3521826863288879</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 12 18 -1.</_>
- <_>5 9 4 6 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.5242584943771362</threshold>
- <left_val>0.4890617132186890</left_val>
- <right_val>-0.1267475932836533</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 9 22 -1.</_>
- <_>0 17 9 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3692750930786133</threshold>
- <left_val>0.0861159935593605</left_val>
- <right_val>-0.6718463897705078</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 12 24 -1.</_>
- <_>7 1 6 12 2.</_>
- <_>1 13 6 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1688378006219864</threshold>
- <left_val>-0.8491569161415100</left_val>
- <right_val>0.0548333488404751</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 26 12 2 -1.</_>
- <_>6 26 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0192792601883411</threshold>
- <left_val>-0.7801151275634766</left_val>
- <right_val>0.0622026808559895</right_val></_></_></trees>
- <stage_threshold>-1.0664960145950317</stage_threshold>
- <parent>3</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 5 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 12 23 -1.</_>
- <_>5 4 4 23 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2090135067701340</threshold>
- <left_val>0.6980816721916199</left_val>
- <right_val>-0.3457359075546265</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 22 6 5 -1.</_>
- <_>5 22 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8061009147204459e-004</threshold>
- <left_val>0.2092390060424805</left_val>
- <right_val>-0.2414764016866684</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 22 6 5 -1.</_>
- <_>6 22 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4844119325280190e-003</threshold>
- <left_val>0.2763600945472717</left_val>
- <right_val>-0.4199039936065674</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 4 6 -1.</_>
- <_>5 4 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1536289714276791e-003</threshold>
- <left_val>0.2471046000719070</left_val>
- <right_val>-0.3067789971828461</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 12 8 -1.</_>
- <_>4 8 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0589119903743267</threshold>
- <left_val>-0.0708347633481026</left_val>
- <right_val>0.7113314270973206</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 5 12 -1.</_>
- <_>6 11 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3095219512470067e-004</threshold>
- <left_val>0.1714860051870346</left_val>
- <right_val>-0.3616837859153748</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 20 14 6 -1.</_>
- <_>0 20 7 3 2.</_>
- <_>7 23 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0313964001834393</threshold>
- <left_val>-0.8013188242912293</left_val>
- <right_val>0.1004256010055542</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 6 6 -1.</_>
- <_>8 9 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5601970739662647e-003</threshold>
- <left_val>0.0994327664375305</left_val>
- <right_val>-0.1484826058149338</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 4 6 -1.</_>
- <_>7 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3389322236180305e-003</threshold>
- <left_val>-0.5662124156951904</left_val>
- <right_val>0.1409679949283600</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 13 12 15 -1.</_>
- <_>2 18 12 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2132671028375626</threshold>
- <left_val>0.0481582097709179</left_val>
- <right_val>-0.7485890984535217</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 4 12 -1.</_>
- <_>0 16 2 6 2.</_>
- <_>2 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0100425295531750</threshold>
- <left_val>0.1042840033769608</left_val>
- <right_val>-0.5538737773895264</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 2 26 -1.</_>
- <_>10 2 1 13 2.</_>
- <_>9 15 1 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0268252808600664</threshold>
- <left_val>0.5728160738945007</left_val>
- <right_val>-0.0825379788875580</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 2 26 -1.</_>
- <_>3 2 1 13 2.</_>
- <_>4 15 1 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3760882262140512e-004</threshold>
- <left_val>-0.2562690079212189</left_val>
- <right_val>0.2589842081069946</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 22 4 6 -1.</_>
- <_>10 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6051978394389153e-003</threshold>
- <left_val>-0.5867735743522644</left_val>
- <right_val>0.0512107796967030</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 12 12 -1.</_>
- <_>4 5 4 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1193564012646675</threshold>
- <left_val>-0.4553082883358002</left_val>
- <right_val>0.1257033050060272</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 15 3 12 -1.</_>
- <_>7 15 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6083478741347790e-003</threshold>
- <left_val>-0.1631637960672379</left_val>
- <right_val>0.4665954113006592</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 3 15 -1.</_>
- <_>6 10 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0173035096377134</threshold>
- <left_val>-0.1239140033721924</left_val>
- <right_val>0.5975540876388550</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 22 4 6 -1.</_>
- <_>10 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4382272064685822e-003</threshold>
- <left_val>0.1383872926235199</left_val>
- <right_val>-0.5506920218467712</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 8 18 -1.</_>
- <_>0 19 8 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4591449182480574e-003</threshold>
- <left_val>-0.3992733955383301</left_val>
- <right_val>0.1538708955049515</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 8 12 -1.</_>
- <_>9 16 4 6 2.</_>
- <_>5 22 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5056238994002342e-003</threshold>
- <left_val>-0.1614670008420944</left_val>
- <right_val>0.1608660072088242</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 25 8 3 -1.</_>
- <_>4 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3172689543571323e-004</threshold>
- <left_val>0.1705936044454575</left_val>
- <right_val>-0.3540942072868347</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 14 8 -1.</_>
- <_>7 17 7 4 2.</_>
- <_>0 21 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0119145298376679</threshold>
- <left_val>0.1626563966274262</left_val>
- <right_val>-0.4146318137645721</right_val></_></_></trees>
- <stage_threshold>-1.2319500446319580</stage_threshold>
- <parent>4</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 6 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 15 6 4 -1.</_>
- <_>5 15 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5429700985550880e-003</threshold>
- <left_val>0.4296497106552124</left_val>
- <right_val>-0.5691584944725037</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 23 9 4 -1.</_>
- <_>8 23 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6804840676486492e-003</threshold>
- <left_val>-0.1038008034229279</left_val>
- <right_val>0.2545371949672699</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 23 9 5 -1.</_>
- <_>3 23 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5870380233973265e-003</threshold>
- <left_val>-0.3657707870006561</left_val>
- <right_val>0.3934333920478821</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 12 22 -1.</_>
- <_>5 4 4 22 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3442833125591278</threshold>
- <left_val>0.7312576174736023</left_val>
- <right_val>-0.1506024003028870</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 5 24 -1.</_>
- <_>1 10 5 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0330544598400593</threshold>
- <left_val>0.1765758991241455</left_val>
- <right_val>-0.5106050968170166</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 23 12 4 -1.</_>
- <_>5 23 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1190310362726450e-003</threshold>
- <left_val>0.0868593230843544</left_val>
- <right_val>-0.1773376017808914</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 4 12 -1.</_>
- <_>5 16 2 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0137807400897145</threshold>
- <left_val>-0.1224716976284981</left_val>
- <right_val>0.6647294163703919</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 12 11 -1.</_>
- <_>1 17 6 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0248479507863522</threshold>
- <left_val>0.2397679984569550</left_val>
- <right_val>-0.3245661854743958</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 3 12 -1.</_>
- <_>6 16 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0131266303360462</threshold>
- <left_val>0.4946180880069733</left_val>
- <right_val>-0.2095437943935394</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 17 4 6 -1.</_>
- <_>8 17 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0168861895799637</threshold>
- <left_val>-0.1397399008274078</left_val>
- <right_val>0.0750131607055664</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 16 4 6 -1.</_>
- <_>7 16 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.2776751108467579e-003</threshold>
- <left_val>-0.3891935944557190</left_val>
- <right_val>0.1892151981592178</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 4 6 -1.</_>
- <_>6 2 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0325549412518740e-003</threshold>
- <left_val>0.2496545016765595</left_val>
- <right_val>-0.1796036064624786</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 5 16 -1.</_>
- <_>2 20 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0180568005889654</threshold>
- <left_val>-0.5368307232856751</left_val>
- <right_val>0.1061547994613648</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 13 3 14 -1.</_>
- <_>7 13 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0288151092827320</threshold>
- <left_val>0.5330320000648499</left_val>
- <right_val>-0.0787126868963242</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 8 3 -1.</_>
- <_>6 6 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0609716586768627</threshold>
- <left_val>-0.8566309213638306</left_val>
- <right_val>0.0817214474081993</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 14 6 -1.</_>
- <_>0 11 14 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0620221607387066</threshold>
- <left_val>-0.6722896099090576</left_val>
- <right_val>0.0823169872164726</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 4 7 -1.</_>
- <_>4 7 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2961759977042675e-003</threshold>
- <left_val>0.2719230949878693</left_val>
- <right_val>-0.2371349036693573</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 4 6 -1.</_>
- <_>8 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9608140252530575e-003</threshold>
- <left_val>-0.1429551988840103</left_val>
- <right_val>0.2938036918640137</right_val></_></_></trees>
- <stage_threshold>-1.1912549734115601</stage_threshold>
- <parent>5</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 7 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 13 8 13 -1.</_>
- <_>5 13 4 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0870013535022736</threshold>
- <left_val>0.6308742761611939</left_val>
- <right_val>-0.2626413106918335</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 4 12 -1.</_>
- <_>10 2 2 6 2.</_>
- <_>8 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5627020299434662e-003</threshold>
- <left_val>0.1464183926582336</left_val>
- <right_val>-0.0523218810558319</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 4 12 -1.</_>
- <_>2 2 2 6 2.</_>
- <_>4 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.1381991468369961e-003</threshold>
- <left_val>0.2174759954214096</left_val>
- <right_val>-0.3210794031620026</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 24 8 3 -1.</_>
- <_>6 24 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9443330529611558e-004</threshold>
- <left_val>0.1430500000715256</left_val>
- <right_val>-0.4474846124649048</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 2 12 -1.</_>
- <_>4 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6125069707632065e-003</threshold>
- <left_val>-0.3593623042106628</left_val>
- <right_val>0.2093449980020523</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 21 14 6 -1.</_>
- <_>0 21 7 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0352383516728878</threshold>
- <left_val>-0.5587955713272095</left_val>
- <right_val>0.1181833967566490</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 8 4 -1.</_>
- <_>4 11 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0238805506378412</threshold>
- <left_val>-0.1234541982412338</left_val>
- <right_val>0.6450573801994324</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 12 5 -1.</_>
- <_>5 2 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5878319758921862e-003</threshold>
- <left_val>0.2334091067314148</left_val>
- <right_val>-0.2990573048591614</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 6 21 -1.</_>
- <_>4 8 2 7 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3438814878463745</threshold>
- <left_val>0.6333410739898682</left_val>
- <right_val>-0.0861014798283577</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 16 2 12 -1.</_>
- <_>11 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5634190533310175e-003</threshold>
- <left_val>-0.3099200129508972</left_val>
- <right_val>0.0882134363055229</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 17 6 5 -1.</_>
- <_>7 17 3 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0470023490488529</threshold>
- <left_val>0.0735333934426308</left_val>
- <right_val>-0.7596526145935059</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 3 12 -1.</_>
- <_>7 16 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1428148075938225e-003</threshold>
- <left_val>-0.1698143035173416</left_val>
- <right_val>0.4198228120803833</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 2 12 -1.</_>
- <_>2 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7736629601567984e-003</threshold>
- <left_val>-0.5566483736038208</left_val>
- <right_val>0.1006005033850670</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 13 3 12 -1.</_>
- <_>8 13 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0221798494458199</threshold>
- <left_val>-0.0760098993778229</left_val>
- <right_val>0.6371104121208191</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 17 4 6 -1.</_>
- <_>6 17 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.9807379178237170e-005</threshold>
- <left_val>-0.2714306116104126</left_val>
- <right_val>0.2150378972291946</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 4 6 -1.</_>
- <_>6 11 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4308329809864517e-005</threshold>
- <left_val>0.1309061050415039</left_val>
- <right_val>-0.2808949947357178</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 8 12 -1.</_>
- <_>1 11 8 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1150026023387909</threshold>
- <left_val>-0.7198622226715088</left_val>
- <right_val>0.0768841728568077</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 13 3 12 -1.</_>
- <_>8 13 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0253185909241438</threshold>
- <left_val>0.4525049924850464</left_val>
- <right_val>-0.0904816910624504</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 8 3 -1.</_>
- <_>6 6 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0486983209848404</threshold>
- <left_val>-0.7417712807655335</left_val>
- <right_val>0.0676924064755440</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 14 3 12 -1.</_>
- <_>8 14 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0045289099216461e-003</threshold>
- <left_val>0.1368017047643662</left_val>
- <right_val>-0.1186091974377632</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 25 12 3 -1.</_>
- <_>4 25 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5120502151548862e-003</threshold>
- <left_val>0.0912609919905663</left_val>
- <right_val>-0.5696067810058594</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 17 4 8 -1.</_>
- <_>7 17 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.4631778039038181e-003</threshold>
- <left_val>0.1170236021280289</left_val>
- <right_val>-0.1476123034954071</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 17 4 8 -1.</_>
- <_>5 17 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0152560099959373</threshold>
- <left_val>-0.1076835989952087</left_val>
- <right_val>0.6471626162528992</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 24 6 4 -1.</_>
- <_>8 24 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0219006203114986</threshold>
- <left_val>-0.6077641844749451</left_val>
- <right_val>0.0644492134451866</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 22 6 6 -1.</_>
- <_>4 22 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1267218980938196e-003</threshold>
- <left_val>-0.2311546951532364</left_val>
- <right_val>0.2181330025196075</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 15 5 8 -1.</_>
- <_>8 15 5 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0315019190311432</threshold>
- <left_val>-0.1367810964584351</left_val>
- <right_val>0.0660032704472542</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 15 8 5 -1.</_>
- <_>6 15 4 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0181079693138599</threshold>
- <left_val>0.1086572036147118</left_val>
- <right_val>-0.4467346072196960</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 12 7 -1.</_>
- <_>4 8 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1105957031250000</threshold>
- <left_val>0.4695417881011963</left_val>
- <right_val>-0.1126838028430939</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 6 10 -1.</_>
- <_>0 15 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2349569480866194e-003</threshold>
- <left_val>-0.2988497018814087</left_val>
- <right_val>0.1814752966165543</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 4 22 -1.</_>
- <_>7 15 4 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0465041883289814</threshold>
- <left_val>0.1284676939249039</left_val>
- <right_val>-0.2660984992980957</right_val></_></_></trees>
- <stage_threshold>-1.1750839948654175</stage_threshold>
- <parent>6</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 8 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 12 22 -1.</_>
- <_>4 4 6 22 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0488205999135971</threshold>
- <left_val>0.4280799031257629</left_val>
- <right_val>-0.5515494942665100</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 4 12 -1.</_>
- <_>8 3 2 6 2.</_>
- <_>6 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4779040357097983e-003</threshold>
- <left_val>-0.1868806034326553</left_val>
- <right_val>0.1903828978538513</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 3 12 -1.</_>
- <_>6 16 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0100122904404998</threshold>
- <left_val>0.3845142126083374</left_val>
- <right_val>-0.2172304987907410</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 6 8 -1.</_>
- <_>8 5 3 4 2.</_>
- <_>5 9 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0510002784430981</threshold>
- <left_val>-0.7613695263862610</left_val>
- <right_val>0.0136259002611041</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 6 8 -1.</_>
- <_>3 5 3 4 2.</_>
- <_>6 9 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2959132008254528e-003</threshold>
- <left_val>-0.2302142977714539</left_val>
- <right_val>0.2853623926639557</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 6 4 -1.</_>
- <_>8 4 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0486541390419006</threshold>
- <left_val>0.7099207043647766</left_val>
- <right_val>-0.0492031499743462</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 3 18 -1.</_>
- <_>5 19 3 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8448636233806610e-003</threshold>
- <left_val>-0.3150536119937897</left_val>
- <right_val>0.2089902013540268</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 4 6 -1.</_>
- <_>7 6 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1006280034780502</threshold>
- <left_val>6.6908989101648331e-003</left_val>
- <right_val>0.6701387166976929</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 6 4 -1.</_>
- <_>7 6 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.0256260223686695e-003</threshold>
- <left_val>-0.3940832912921906</left_val>
- <right_val>0.1743354946374893</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 24 8 3 -1.</_>
- <_>6 24 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1224319934844971e-003</threshold>
- <left_val>0.1699631065130234</left_val>
- <right_val>-0.3023740947246552</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 12 5 -1.</_>
- <_>4 11 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.9532064050436020e-003</threshold>
- <left_val>-0.1420284062623978</left_val>
- <right_val>0.4516746103763580</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 22 4 6 -1.</_>
- <_>10 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0125650698319077</threshold>
- <left_val>0.0731758773326874</left_val>
- <right_val>-0.6170042157173157</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 4 12 -1.</_>
- <_>2 3 2 6 2.</_>
- <_>4 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7854310572147369e-003</threshold>
- <left_val>0.1490986049175263</left_val>
- <right_val>-0.3286524116992950</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 22 4 6 -1.</_>
- <_>10 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0306518785655499e-003</threshold>
- <left_val>-0.4571371078491211</left_val>
- <right_val>0.1081572026014328</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 22 4 6 -1.</_>
- <_>2 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.3099560104310513e-003</threshold>
- <left_val>-0.6559277176856995</left_val>
- <right_val>0.0656157881021500</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 15 3 12 -1.</_>
- <_>7 15 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0338434316217899</threshold>
- <left_val>0.5041236877441406</left_val>
- <right_val>-0.0616260692477226</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 16 4 6 -1.</_>
- <_>7 16 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.8319290615618229e-004</threshold>
- <left_val>-0.2515347898006439</left_val>
- <right_val>0.2027134001255035</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 6 6 -1.</_>
- <_>4 4 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6169361080974340e-003</threshold>
- <left_val>0.2249795943498612</left_val>
- <right_val>-0.2195861935615540</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 2 12 -1.</_>
- <_>4 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5606079511344433e-003</threshold>
- <left_val>-0.4659804105758667</left_val>
- <right_val>0.1234800964593887</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 16 2 12 -1.</_>
- <_>7 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0108227897435427</threshold>
- <left_val>-0.0966189727187157</left_val>
- <right_val>0.4641242921352387</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 4 6 -1.</_>
- <_>7 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3171347826719284e-003</threshold>
- <left_val>-0.5563424825668335</left_val>
- <right_val>0.0946232825517654</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 2 12 -1.</_>
- <_>7 15 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.3140971148386598e-004</threshold>
- <left_val>0.1014392971992493</left_val>
- <right_val>-0.1056424006819725</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 15 2 12 -1.</_>
- <_>6 15 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4296840941533446e-004</threshold>
- <left_val>-0.1324310004711151</left_val>
- <right_val>0.3535107970237732</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 25 12 2 -1.</_>
- <_>2 25 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0278069600462914</threshold>
- <left_val>-0.6505060195922852</left_val>
- <right_val>0.0331535898149014</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 4 12 -1.</_>
- <_>3 16 2 6 2.</_>
- <_>5 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9245469057932496e-004</threshold>
- <left_val>-0.2670288085937500</left_val>
- <right_val>0.2112963050603867</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 24 8 3 -1.</_>
- <_>6 24 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0127872303128242</threshold>
- <left_val>0.2159364074468613</left_val>
- <right_val>-0.0867670774459839</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 25 12 2 -1.</_>
- <_>6 25 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1678601196035743e-004</threshold>
- <left_val>0.1695998013019562</left_val>
- <right_val>-0.2924894094467163</right_val></_></_></trees>
- <stage_threshold>-1.1861419677734375</stage_threshold>
- <parent>7</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 9 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 6 27 -1.</_>
- <_>4 10 6 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0517069287598133</threshold>
- <left_val>0.4694269895553589</left_val>
- <right_val>-0.5128067135810852</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 3 12 -1.</_>
- <_>7 16 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5232150480151176e-003</threshold>
- <left_val>-0.2498238980770111</left_val>
- <right_val>0.6300581097602844</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 21 6 4 -1.</_>
- <_>6 21 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.2110745608806610e-003</threshold>
- <left_val>0.3753066956996918</left_val>
- <right_val>-0.2291038036346436</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 6 12 -1.</_>
- <_>4 8 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0417299605906010</threshold>
- <left_val>-0.1126201003789902</left_val>
- <right_val>0.6750869750976563</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 6 4 -1.</_>
- <_>6 0 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.5255841687321663e-003</threshold>
- <left_val>-0.2693972885608673</left_val>
- <right_val>0.2488950937986374</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 3 14 -1.</_>
- <_>7 4 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5208792006596923e-004</threshold>
- <left_val>0.2009855061769486</left_val>
- <right_val>-0.2300173044204712</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 6 6 -1.</_>
- <_>6 8 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4569639246910810e-003</threshold>
- <left_val>-0.3637234866619110</left_val>
- <right_val>0.2714250087738037</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 24 12 4 -1.</_>
- <_>6 24 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0882003605365753</threshold>
- <left_val>-0.7595195770263672</left_val>
- <right_val>-7.2166309691965580e-003</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 24 12 4 -1.</_>
- <_>4 24 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3253160179592669e-004</threshold>
- <left_val>0.1473821997642517</left_val>
- <right_val>-0.4254870116710663</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 13 3 12 -1.</_>
- <_>9 13 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0192584004253149</threshold>
- <left_val>-0.0848308727145195</left_val>
- <right_val>0.5948777198791504</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 22 4 6 -1.</_>
- <_>3 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1915740109980106e-003</threshold>
- <left_val>-0.4263828098773956</left_val>
- <right_val>0.1335715949535370</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 3 12 -1.</_>
- <_>8 7 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0222290400415659</threshold>
- <left_val>-0.4229826927185059</left_val>
- <right_val>0.0361279584467411</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 3 12 -1.</_>
- <_>5 7 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3123440593481064e-003</threshold>
- <left_val>0.2934978008270264</left_val>
- <right_val>-0.2219786942005158</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 8 3 -1.</_>
- <_>4 1 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6796981953084469e-003</threshold>
- <left_val>0.0804127901792526</left_val>
- <right_val>-0.1972528994083405</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 3 23 -1.</_>
- <_>5 4 1 23 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2511178869754076e-003</threshold>
- <left_val>-0.1662839055061340</left_val>
- <right_val>0.3310728073120117</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 21 4 7 -1.</_>
- <_>9 21 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5559039786458015e-003</threshold>
- <left_val>0.0673501715064049</left_val>
- <right_val>-0.2464237064123154</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 14 3 12 -1.</_>
- <_>6 14 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0312399994581938</threshold>
- <left_val>-0.0673935115337372</left_val>
- <right_val>0.8285176753997803</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 26 12 2 -1.</_>
- <_>2 26 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4333371333777905e-003</threshold>
- <left_val>-0.3804832100868225</left_val>
- <right_val>0.1424861997365952</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 26 12 2 -1.</_>
- <_>6 26 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9497618563473225e-003</threshold>
- <left_val>-0.3566044867038727</left_val>
- <right_val>0.1868544071912766</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 13 3 12 -1.</_>
- <_>9 13 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0140432901680470</threshold>
- <left_val>0.5322288870811462</left_val>
- <right_val>-0.0789808034896851</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 13 3 12 -1.</_>
- <_>4 13 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.2212791740894318e-003</threshold>
- <left_val>-0.1984183043241501</left_val>
- <right_val>0.3136729896068573</right_val></_></_></trees>
- <stage_threshold>-1.0550270080566406</stage_threshold>
- <parent>8</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 10 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 8 20 -1.</_>
- <_>3 7 8 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1527878940105438</threshold>
- <left_val>0.5414003729820252</left_val>
- <right_val>-0.1875697970390320</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 18 12 8 -1.</_>
- <_>5 18 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0706556364893913</threshold>
- <left_val>0.3400335013866425</left_val>
- <right_val>-0.1445966958999634</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 6 6 -1.</_>
- <_>6 9 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0210332293063402</threshold>
- <left_val>-0.5587847232818604</left_val>
- <right_val>0.1159814968705177</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 18 12 8 -1.</_>
- <_>5 18 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5666358247399330e-003</threshold>
- <left_val>0.1089008003473282</left_val>
- <right_val>-0.2036568969488144</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 24 8 4 -1.</_>
- <_>4 24 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0427205413579941</threshold>
- <left_val>-0.9403002262115479</left_val>
- <right_val>0.0636063218116760</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 2 24 -1.</_>
- <_>7 2 1 12 2.</_>
- <_>6 14 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5477859675884247e-003</threshold>
- <left_val>0.3422701954841614</left_val>
- <right_val>-0.1705372035503388</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 4 12 -1.</_>
- <_>5 8 2 6 2.</_>
- <_>7 14 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7029080558568239e-003</threshold>
- <left_val>0.0837208926677704</left_val>
- <right_val>-0.4613954126834869</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 6 6 -1.</_>
- <_>7 3 3 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1145887002348900</threshold>
- <left_val>0.6002784967422485</left_val>
- <right_val>-0.0177644807845354</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 6 7 -1.</_>
- <_>2 8 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.7319342158734798e-003</threshold>
- <left_val>-0.2559010982513428</left_val>
- <right_val>0.2006231993436813</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 6 6 -1.</_>
- <_>7 3 3 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0702377930283546</threshold>
- <left_val>0.2535978853702545</left_val>
- <right_val>-0.0295036192983389</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 6 4 -1.</_>
- <_>7 8 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0139831798151135</threshold>
- <left_val>0.1145640015602112</left_val>
- <right_val>-0.3968353867530823</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 10 19 -1.</_>
- <_>2 7 5 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1817575991153717</threshold>
- <left_val>0.0507499501109123</left_val>
- <right_val>-0.8306192755699158</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 11 24 -1.</_>
- <_>0 16 11 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0301854908466339</threshold>
- <left_val>-0.2668361067771912</left_val>
- <right_val>0.1407079994678497</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 12 21 -1.</_>
- <_>5 8 4 7 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.7563328742980957</threshold>
- <left_val>-0.0414166189730167</left_val>
- <right_val>0.9095727801322937</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 12 8 -1.</_>
- <_>3 18 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5228988900780678e-003</threshold>
- <left_val>0.1614249944686890</left_val>
- <right_val>-0.2754909992218018</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 17 4 8 -1.</_>
- <_>9 17 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.9996669404208660e-003</threshold>
- <left_val>-0.1166673004627228</left_val>
- <right_val>0.0602988190948963</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 4 6 -1.</_>
- <_>4 10 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9932802105322480e-004</threshold>
- <left_val>0.1301555037498474</left_val>
- <right_val>-0.3107284009456635</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 5 9 -1.</_>
- <_>7 10 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0960636734962463</threshold>
- <left_val>-0.8525934815406799</left_val>
- <right_val>0.0159707907587290</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 4 8 -1.</_>
- <_>3 17 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0154820568859577e-003</threshold>
- <left_val>-0.4549050927162170</left_val>
- <right_val>0.0771780908107758</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 15 3 13 -1.</_>
- <_>10 15 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.7620541453361511e-003</threshold>
- <left_val>0.4803450107574463</left_val>
- <right_val>-0.0813068374991417</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 6 8 -1.</_>
- <_>3 0 3 4 2.</_>
- <_>6 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9868508465588093e-003</threshold>
- <left_val>0.2249560058116913</left_val>
- <right_val>-0.2044728994369507</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 18 4 10 -1.</_>
- <_>9 18 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0573353096842766</threshold>
- <left_val>-0.5685973763465881</left_val>
- <right_val>5.2798101678490639e-003</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 4 10 -1.</_>
- <_>3 18 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9260890549048781e-003</threshold>
- <left_val>0.1492034047842026</left_val>
- <right_val>-0.3105990886688232</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 22 2 4 -1.</_>
- <_>7 22 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0211180709302425</threshold>
- <left_val>4.1174301877617836e-003</left_val>
- <right_val>-0.5240138173103333</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 22 4 2 -1.</_>
- <_>7 22 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.1973599903285503e-003</threshold>
- <left_val>0.2335339933633804</left_val>
- <right_val>-0.2019366025924683</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 5 9 -1.</_>
- <_>7 10 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5973812229931355e-003</threshold>
- <left_val>0.0599170103669167</left_val>
- <right_val>-0.1187831014394760</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 12 11 -1.</_>
- <_>4 7 6 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0288696605712175</threshold>
- <left_val>-0.0941107794642448</left_val>
- <right_val>0.4596694111824036</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 3 8 -1.</_>
- <_>8 6 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.7549799308180809e-003</threshold>
- <left_val>0.1216117963194847</left_val>
- <right_val>-0.1481101959943771</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 3 16 -1.</_>
- <_>5 12 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.2033549398183823e-003</threshold>
- <left_val>0.1090307012200356</left_val>
- <right_val>-0.3870052099227905</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 3 8 -1.</_>
- <_>8 6 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0729940682649612</threshold>
- <left_val>-0.0340467989444733</left_val>
- <right_val>0.3061003983020783</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 8 3 -1.</_>
- <_>6 6 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0166671797633171</threshold>
- <left_val>0.1316858977079392</left_val>
- <right_val>-0.3848586082458496</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 24 12 3 -1.</_>
- <_>6 24 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8268690221011639e-003</threshold>
- <left_val>0.0647821575403214</left_val>
- <right_val>-0.2237170934677124</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 6 4 -1.</_>
- <_>3 7 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7736070808023214e-003</threshold>
- <left_val>-0.1559296995401382</left_val>
- <right_val>0.2541306912899017</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 6 4 -1.</_>
- <_>4 7 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6936940159648657e-003</threshold>
- <left_val>0.2557652890682221</left_val>
- <right_val>-0.1576806008815765</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 6 6 -1.</_>
- <_>6 14 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0668010637164116</threshold>
- <left_val>-0.7434608936309815</left_val>
- <right_val>0.0549156405031681</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 11 3 13 -1.</_>
- <_>7 11 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0157527904957533</threshold>
- <left_val>-0.0986381024122238</left_val>
- <right_val>0.4311982095241547</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 24 12 3 -1.</_>
- <_>4 24 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.0647127944976091e-004</threshold>
- <left_val>0.1133923977613449</left_val>
- <right_val>-0.4157446026802063</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 16 2 12 -1.</_>
- <_>9 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0216956995427608</threshold>
- <left_val>0.4694924056529999</left_val>
- <right_val>-0.0557326115667820</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 2 12 -1.</_>
- <_>4 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4639029977843165e-003</threshold>
- <left_val>-0.3061788082122803</left_val>
- <right_val>0.1439816951751709</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 16 2 12 -1.</_>
- <_>7 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0178105607628822</threshold>
- <left_val>0.3041172921657562</left_val>
- <right_val>-0.0467588007450104</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 21 4 6 -1.</_>
- <_>2 21 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6027648970484734e-003</threshold>
- <left_val>-0.5294290184974670</left_val>
- <right_val>0.0782871171832085</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 16 2 12 -1.</_>
- <_>7 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9500569906085730e-003</threshold>
- <left_val>-0.0959494486451149</left_val>
- <right_val>0.1903167068958283</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 10 16 -1.</_>
- <_>2 3 5 8 2.</_>
- <_>7 11 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1064156964421272</threshold>
- <left_val>0.0472884401679039</left_val>
- <right_val>-0.8652535080909729</right_val></_></_></trees>
- <stage_threshold>-1.1214250326156616</stage_threshold>
- <parent>9</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 11 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 6 16 -1.</_>
- <_>4 20 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0182569902390242</threshold>
- <left_val>-0.5556493997573853</left_val>
- <right_val>0.4354656040668488</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 12 11 -1.</_>
- <_>4 15 6 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1124944016337395</threshold>
- <left_val>0.6180027723312378</left_val>
- <right_val>-0.2164181023836136</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 6 10 -1.</_>
- <_>3 4 3 5 2.</_>
- <_>6 9 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0443440880626440e-003</threshold>
- <left_val>-0.3137955963611603</left_val>
- <right_val>0.2642489075660706</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 24 12 4 -1.</_>
- <_>8 24 6 2 2.</_>
- <_>2 26 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2505697133019567e-004</threshold>
- <left_val>-0.2365960031747818</left_val>
- <right_val>0.2116999030113220</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 24 12 4 -1.</_>
- <_>0 24 6 2 2.</_>
- <_>6 26 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3297300320118666e-003</threshold>
- <left_val>-0.3133944869041443</left_val>
- <right_val>0.3044906854629517</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 6 4 -1.</_>
- <_>8 4 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0468403697013855</threshold>
- <left_val>0.5375909209251404</left_val>
- <right_val>-0.0180811397731304</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 12 18 -1.</_>
- <_>5 8 4 6 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.6487429141998291</threshold>
- <left_val>0.6676843762397766</left_val>
- <right_val>-0.0912478491663933</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 22 10 6 -1.</_>
- <_>2 22 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.6183530986309052e-003</threshold>
- <left_val>0.1473377943038940</left_val>
- <right_val>-0.3219302892684937</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 26 12 2 -1.</_>
- <_>7 26 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2117879707366228e-003</threshold>
- <left_val>0.1575541943311691</left_val>
- <right_val>-0.3679918050765991</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 6 4 -1.</_>
- <_>8 4 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.9280291423201561e-003</threshold>
- <left_val>-0.0834057405591011</left_val>
- <right_val>0.0682601779699326</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 10 4 -1.</_>
- <_>5 12 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0139770796522498</threshold>
- <left_val>-0.1070206016302109</left_val>
- <right_val>0.4832653105258942</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 6 4 -1.</_>
- <_>4 10 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0333389946026728e-004</threshold>
- <left_val>0.1364544928073883</left_val>
- <right_val>-0.3177702128887177</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 4 12 -1.</_>
- <_>5 4 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2287340834736824e-003</threshold>
- <left_val>0.2179117947816849</left_val>
- <right_val>-0.1992329955101013</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 6 8 -1.</_>
- <_>10 4 3 4 2.</_>
- <_>7 8 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0323015116155148</threshold>
- <left_val>0.3313513100147247</left_val>
- <right_val>-0.0206170398741961</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 14 4 -1.</_>
- <_>0 18 7 2 2.</_>
- <_>7 20 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0232400391250849</threshold>
- <left_val>0.0596725717186928</left_val>
- <right_val>-0.6499395966529846</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 16 2 12 -1.</_>
- <_>7 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5599120892584324e-003</threshold>
- <left_val>-0.1481892019510269</left_val>
- <right_val>0.2989333868026733</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 15 3 12 -1.</_>
- <_>5 15 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0154697597026825</threshold>
- <left_val>-0.0755695998668671</left_val>
- <right_val>0.5231468081474304</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 9 2 13 -1.</_>
- <_>8 9 1 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6372289974242449e-004</threshold>
- <left_val>0.1044673025608063</left_val>
- <right_val>-0.2094334065914154</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 4 6 -1.</_>
- <_>7 10 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9369019903242588e-003</threshold>
- <left_val>-0.4319773912429810</left_val>
- <right_val>0.1076581031084061</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 11 8 5 -1.</_>
- <_>3 11 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.8579207183793187e-004</threshold>
- <left_val>-0.2461477965116501</left_val>
- <right_val>0.2155473977327347</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 2 12 -1.</_>
- <_>6 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0111566996201873</threshold>
- <left_val>-0.0818208828568459</left_val>
- <right_val>0.6733806729316711</right_val></_></_></trees>
- <stage_threshold>-1.1566660404205322</stage_threshold>
- <parent>10</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 12 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 10 17 -1.</_>
- <_>5 7 5 17 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1847351938486099</threshold>
- <left_val>0.5475882887840271</left_val>
- <right_val>-0.2231906950473785</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 8 4 -1.</_>
- <_>3 9 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8615030460059643e-003</threshold>
- <left_val>0.1926427930593491</left_val>
- <right_val>-0.2298910021781921</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 4 24 -1.</_>
- <_>5 8 4 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1797018945217133</threshold>
- <left_val>-0.0645736828446388</left_val>
- <right_val>0.8032200932502747</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 9 4 -1.</_>
- <_>6 16 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0528127290308475</threshold>
- <left_val>0.2878498136997223</left_val>
- <right_val>-0.0882893875241280</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 14 6 4 -1.</_>
- <_>7 14 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.9000339135527611e-003</threshold>
- <left_val>0.1097920984029770</left_val>
- <right_val>-0.4888688921928406</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 23 9 4 -1.</_>
- <_>8 23 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0404695309698582</threshold>
- <left_val>0.0616974681615829</left_val>
- <right_val>-0.7290781736373901</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 22 9 4 -1.</_>
- <_>3 22 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5191249810159206e-003</threshold>
- <left_val>-0.2797237932682037</left_val>
- <right_val>0.1706515997648239</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 22 4 6 -1.</_>
- <_>9 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8400939665734768e-003</threshold>
- <left_val>-0.2832930088043213</left_val>
- <right_val>0.1161170974373817</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 24 6 4 -1.</_>
- <_>4 24 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.1505218511447310e-004</threshold>
- <left_val>0.1587048023939133</left_val>
- <right_val>-0.2825342118740082</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 19 8 9 -1.</_>
- <_>6 19 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0301278997212648</threshold>
- <left_val>-0.0362363383173943</left_val>
- <right_val>0.5336939096450806</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 19 8 9 -1.</_>
- <_>4 19 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0199076402932405</threshold>
- <left_val>-0.3222998976707459</left_val>
- <right_val>0.1493317037820816</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 22 12 4 -1.</_>
- <_>5 22 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0314356684684753</threshold>
- <left_val>0.2081288993358612</left_val>
- <right_val>-0.0967622101306915</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 19 14 7 -1.</_>
- <_>7 19 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0199126806110144</threshold>
- <left_val>-0.3292892873287201</left_val>
- <right_val>0.1273272931575775</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 20 6 8 -1.</_>
- <_>8 20 3 4 2.</_>
- <_>5 24 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0406267493963242</threshold>
- <left_val>0.0169857200235128</left_val>
- <right_val>-0.5222617983818054</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 20 6 8 -1.</_>
- <_>3 20 3 4 2.</_>
- <_>6 24 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6589110018685460e-003</threshold>
- <left_val>-0.2379567027091980</left_val>
- <right_val>0.2077559977769852</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 4 14 -1.</_>
- <_>8 1 2 7 2.</_>
- <_>6 8 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9869199022650719e-003</threshold>
- <left_val>-0.1349375993013382</left_val>
- <right_val>0.1205085963010788</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 4 12 -1.</_>
- <_>2 2 2 6 2.</_>
- <_>4 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0419858209788799</threshold>
- <left_val>0.4460113048553467</left_val>
- <right_val>-0.0761459693312645</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 6 4 -1.</_>
- <_>7 4 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0702601820230484</threshold>
- <left_val>0.0158335696905851</left_val>
- <right_val>-0.3818230032920837</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 4 6 -1.</_>
- <_>7 4 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0179928001016378</threshold>
- <left_val>-0.3697398006916046</left_val>
- <right_val>0.1045159995555878</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 6 5 -1.</_>
- <_>7 3 3 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1042096987366676</threshold>
- <left_val>0.5183687806129456</left_val>
- <right_val>-0.0223724003881216</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 5 6 -1.</_>
- <_>7 3 5 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0532773695886135</threshold>
- <left_val>0.0747159272432327</left_val>
- <right_val>-0.5848941206932068</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 6 4 -1.</_>
- <_>7 3 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0968191623687744</threshold>
- <left_val>-7.8130746260285378e-003</left_val>
- <right_val>-0.9053189754486084</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 8 18 -1.</_>
- <_>3 8 8 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2231761068105698</threshold>
- <left_val>0.4784899950027466</left_val>
- <right_val>-0.0895702466368675</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 15 9 12 -1.</_>
- <_>7 19 3 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0135237602517009</threshold>
- <left_val>0.0651585832238197</left_val>
- <right_val>-0.1403055936098099</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 21 12 6 -1.</_>
- <_>7 21 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0714653432369232</threshold>
- <left_val>-0.8899757266044617</left_val>
- <right_val>0.0381110087037086</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 18 4 8 -1.</_>
- <_>9 18 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0247345604002476</threshold>
- <left_val>-0.0328582599759102</left_val>
- <right_val>0.3536860048770905</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 9 4 -1.</_>
- <_>5 16 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2641810141503811e-003</threshold>
- <left_val>0.1288572996854782</left_val>
- <right_val>-0.2778818011283875</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 17 10 6 -1.</_>
- <_>4 17 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0432465411722660</threshold>
- <left_val>-0.0263446196913719</left_val>
- <right_val>0.3333376049995422</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 4 8 -1.</_>
- <_>3 18 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2720978856086731e-003</threshold>
- <left_val>0.0961221083998680</left_val>
- <right_val>-0.3820368945598602</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 5 6 -1.</_>
- <_>9 3 5 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.4102048054337502e-003</threshold>
- <left_val>0.1692444980144501</left_val>
- <right_val>-0.0752360522747040</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 8 6 -1.</_>
- <_>5 17 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0177471004426479</threshold>
- <left_val>-0.0651267394423485</left_val>
- <right_val>0.5372086763381958</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 19 12 9 -1.</_>
- <_>6 22 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1646672934293747</threshold>
- <left_val>0.0267640296369791</left_val>
- <right_val>-0.6950613260269165</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 4 14 -1.</_>
- <_>2 0 2 7 2.</_>
- <_>4 7 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6354909688234329e-003</threshold>
- <left_val>0.1726163029670715</left_val>
- <right_val>-0.2024289071559906</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 10 14 -1.</_>
- <_>9 9 5 7 2.</_>
- <_>4 16 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0766481682658196</threshold>
- <left_val>0.2256714999675751</left_val>
- <right_val>-0.0350441411137581</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 4 12 -1.</_>
- <_>0 16 2 6 2.</_>
- <_>2 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9634330421686172e-003</threshold>
- <left_val>0.1067982017993927</left_val>
- <right_val>-0.3070451915264130</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 24 8 4 -1.</_>
- <_>3 24 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0189680401235819</threshold>
- <left_val>-0.6534953117370606</left_val>
- <right_val>0.0453284494578838</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 14 22 -1.</_>
- <_>0 16 14 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.6227293014526367</threshold>
- <left_val>0.0294184703379869</left_val>
- <right_val>-0.7741603255271912</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 13 6 8 -1.</_>
- <_>6 17 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1170540023595095e-003</threshold>
- <left_val>-0.1926358044147492</left_val>
- <right_val>0.1008249968290329</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 10 14 -1.</_>
- <_>0 9 5 7 2.</_>
- <_>5 16 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1017974019050598</threshold>
- <left_val>0.5066729187965393</left_val>
- <right_val>-0.0758455321192741</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 9 9 -1.</_>
- <_>3 6 9 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0875393673777580</threshold>
- <left_val>-0.8012782931327820</left_val>
- <right_val>0.0397419817745686</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 4 6 -1.</_>
- <_>5 4 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0089199319481850e-003</threshold>
- <left_val>0.1586735993623734</left_val>
- <right_val>-0.2039071023464203</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 12 9 -1.</_>
- <_>5 3 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1725274026393890</threshold>
- <left_val>-0.4855650961399078</left_val>
- <right_val>0.0661624372005463</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 6 12 -1.</_>
- <_>4 7 3 6 2.</_>
- <_>7 13 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2747491020709276e-003</threshold>
- <left_val>0.1083929017186165</left_val>
- <right_val>-0.2612051069736481</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 6 18 -1.</_>
- <_>8 13 2 6 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0870257318019867</threshold>
- <left_val>-0.0456128492951393</left_val>
- <right_val>0.3064231872558594</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 6 18 -1.</_>
- <_>4 13 2 6 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0333020910620689</threshold>
- <left_val>0.0985119566321373</left_val>
- <right_val>-0.4032101035118103</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 22 12 4 -1.</_>
- <_>6 22 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5495370179414749e-003</threshold>
- <left_val>0.0678094699978828</left_val>
- <right_val>-0.1944850981235504</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 8 8 -1.</_>
- <_>3 16 4 4 2.</_>
- <_>7 20 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5916801579296589e-003</threshold>
- <left_val>-0.3322997987270355</left_val>
- <right_val>0.1055229976773262</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 6 10 -1.</_>
- <_>7 7 3 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0547769404947758</threshold>
- <left_val>0.3134475052356720</left_val>
- <right_val>-0.0925614312291145</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 12 10 -1.</_>
- <_>4 8 6 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0172933097928762</threshold>
- <left_val>-0.1036652028560638</left_val>
- <right_val>0.4573282003402710</right_val></_></_></trees>
- <stage_threshold>-1.0953630208969116</stage_threshold>
- <parent>11</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 13 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 3 12 -1.</_>
- <_>6 16 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0225016307085752</threshold>
- <left_val>0.5229359269142151</left_val>
- <right_val>-0.1796838045120239</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 10 17 -1.</_>
- <_>4 5 5 17 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0181667208671570</threshold>
- <left_val>0.1428108960390091</left_val>
- <right_val>-0.3026844859123230</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 14 24 -1.</_>
- <_>7 4 7 24 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0316802598536015</threshold>
- <left_val>0.1570882052183151</left_val>
- <right_val>-0.3230336904525757</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 6 7 -1.</_>
- <_>6 9 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0234762504696846</threshold>
- <left_val>-0.4557600021362305</left_val>
- <right_val>0.1030009016394615</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 20 10 8 -1.</_>
- <_>2 20 5 4 2.</_>
- <_>7 24 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0456882789731026</threshold>
- <left_val>0.0678735375404358</left_val>
- <right_val>-0.7462332844734192</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 6 8 -1.</_>
- <_>6 7 6 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0746098831295967</threshold>
- <left_val>0.2054854035377502</left_val>
- <right_val>-0.1009785979986191</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 4 6 -1.</_>
- <_>6 4 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0459031015634537</threshold>
- <left_val>0.6666275858879089</left_val>
- <right_val>-0.0690716579556465</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 4 6 -1.</_>
- <_>6 3 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7763070799410343e-004</threshold>
- <left_val>0.1138644963502884</left_val>
- <right_val>-0.1227831989526749</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 4 6 -1.</_>
- <_>7 4 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.1800830513238907e-004</threshold>
- <left_val>0.1999998986721039</left_val>
- <right_val>-0.2237267047166824</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 4 6 -1.</_>
- <_>5 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4581039324402809e-003</threshold>
- <left_val>0.1007374972105026</left_val>
- <right_val>-0.3632315993309021</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 6 6 -1.</_>
- <_>7 3 6 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0674670487642288</threshold>
- <left_val>0.0542006902396679</left_val>
- <right_val>-0.6034706830978394</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 6 6 -1.</_>
- <_>4 8 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0389718599617481</threshold>
- <left_val>0.4027759134769440</left_val>
- <right_val>-0.1129947006702423</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 6 14 -1.</_>
- <_>3 19 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1662815958261490</threshold>
- <left_val>0.0482903085649014</left_val>
- <right_val>-0.8126922249794006</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 16 2 12 -1.</_>
- <_>11 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5140322074294090e-003</threshold>
- <left_val>0.0604846104979515</left_val>
- <right_val>-0.5457589030265808</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 22 6 6 -1.</_>
- <_>3 22 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2837080284953117e-003</threshold>
- <left_val>-0.2815071046352387</left_val>
- <right_val>0.1278554946184158</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 3 12 -1.</_>
- <_>7 16 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0338401608169079</threshold>
- <left_val>-0.0619250908493996</left_val>
- <right_val>0.5446158051490784</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 3 12 -1.</_>
- <_>6 16 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0142245600000024</threshold>
- <left_val>-0.0837020725011826</left_val>
- <right_val>0.5540488958358765</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 8 4 -1.</_>
- <_>3 11 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4315280714072287e-004</threshold>
- <left_val>0.1531862020492554</left_val>
- <right_val>-0.2831287086009979</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 2 12 -1.</_>
- <_>4 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0136043904349208</threshold>
- <left_val>-0.6322932839393616</left_val>
- <right_val>0.0567920282483101</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 20 12 8 -1.</_>
- <_>5 20 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1795231997966766</threshold>
- <left_val>-0.7747110128402710</left_val>
- <right_val>-1.2696949997916818e-003</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 20 12 8 -1.</_>
- <_>3 20 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3834888860583305e-003</threshold>
- <left_val>0.1286493986845017</left_val>
- <right_val>-0.3115915954113007</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 9 12 -1.</_>
- <_>5 10 9 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1814050972461700</threshold>
- <left_val>-0.7070493102073669</left_val>
- <right_val>0.0309925191104412</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 10 4 -1.</_>
- <_>4 12 10 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.4940429031848907e-003</threshold>
- <left_val>0.1019228994846344</left_val>
- <right_val>-0.3339323103427887</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 10 4 -1.</_>
- <_>4 2 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0408617407083511</threshold>
- <left_val>0.0312678888440132</left_val>
- <right_val>-0.4373905062675476</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 12 13 -1.</_>
- <_>4 15 6 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0369939990341663</threshold>
- <left_val>-0.0624536089599133</left_val>
- <right_val>0.5760527849197388</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 16 2 12 -1.</_>
- <_>11 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7690118923783302e-003</threshold>
- <left_val>-0.6073737144470215</left_val>
- <right_val>0.0697584524750710</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 3 12 -1.</_>
- <_>3 3 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1885702200233936e-003</threshold>
- <left_val>-0.1403401046991348</left_val>
- <right_val>0.2450957000255585</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 4 6 -1.</_>
- <_>8 2 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0305586792528629</threshold>
- <left_val>-0.2610909938812256</left_val>
- <right_val>0.0208937600255013</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 4 6 -1.</_>
- <_>4 2 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0139495003968477</threshold>
- <left_val>-0.4598451852798462</left_val>
- <right_val>0.0729969888925552</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 13 12 14 -1.</_>
- <_>5 13 6 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1743914932012558</threshold>
- <left_val>0.2791750133037567</left_val>
- <right_val>-0.0703096911311150</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 2 12 -1.</_>
- <_>2 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6514460593461990e-003</threshold>
- <left_val>-0.5833538770675659</left_val>
- <right_val>0.0485431700944901</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 21 4 6 -1.</_>
- <_>9 21 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6718150153756142e-003</threshold>
- <left_val>-0.2064559012651444</left_val>
- <right_val>0.0599499903619289</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 21 4 6 -1.</_>
- <_>3 21 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9772339985356666e-005</threshold>
- <left_val>0.1662708073854446</left_val>
- <right_val>-0.1814447045326233</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 3 15 -1.</_>
- <_>10 0 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2705092132091522e-003</threshold>
- <left_val>0.2582921087741852</left_val>
- <right_val>-0.1354808062314987</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 22 4 6 -1.</_>
- <_>4 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2028051577508450e-003</threshold>
- <left_val>-0.2958551943302155</left_val>
- <right_val>0.1022360026836395</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 13 12 14 -1.</_>
- <_>5 13 6 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0367218405008316</threshold>
- <left_val>0.1144345998764038</left_val>
- <right_val>-0.1567068994045258</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 4 6 -1.</_>
- <_>6 3 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0787174329161644</threshold>
- <left_val>0.0294073894619942</left_val>
- <right_val>-0.8965392708778381</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 12 24 -1.</_>
- <_>5 8 4 8 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.9085621237754822</threshold>
- <left_val>-0.0564002692699432</left_val>
- <right_val>0.6954352855682373</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 6 8 -1.</_>
- <_>4 6 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2952598780393600e-003</threshold>
- <left_val>0.1828244030475617</left_val>
- <right_val>-0.2051848024129868</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 12 8 -1.</_>
- <_>2 6 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0526723414659500</threshold>
- <left_val>-0.6813353896141052</left_val>
- <right_val>0.0360460691154003</right_val></_></_></trees>
- <stage_threshold>-1.0216970443725586</stage_threshold>
- <parent>12</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 14 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 12 18 -1.</_>
- <_>4 8 6 18 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2173130959272385</threshold>
- <left_val>0.5971680879592896</left_val>
- <right_val>-0.2243269979953766</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 8 24 -1.</_>
- <_>3 8 8 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3462795913219452</threshold>
- <left_val>0.5374193787574768</left_val>
- <right_val>-0.0877821892499924</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 21 6 6 -1.</_>
- <_>3 21 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0713579831644893e-003</threshold>
- <left_val>-0.3592022955417633</left_val>
- <right_val>0.1568592935800552</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 8 3 -1.</_>
- <_>5 7 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0612671412527561</threshold>
- <left_val>-0.7100325226783752</left_val>
- <right_val>0.0205278992652893</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 8 3 -1.</_>
- <_>5 7 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0312818400561810</threshold>
- <left_val>-0.0746467635035515</left_val>
- <right_val>0.5968912243843079</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 4 6 -1.</_>
- <_>5 4 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2337400112301111e-003</threshold>
- <left_val>0.1594983041286469</left_val>
- <right_val>-0.2718119919300079</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 4 6 -1.</_>
- <_>4 9 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4508139360696077e-003</threshold>
- <left_val>0.2025516033172607</left_val>
- <right_val>-0.1939913928508759</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 20 4 6 -1.</_>
- <_>10 20 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0481761358678341e-003</threshold>
- <left_val>-0.5510008931159973</left_val>
- <right_val>0.0707383230328560</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 8 21 -1.</_>
- <_>3 8 8 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2295020073652268</threshold>
- <left_val>-0.0875734165310860</left_val>
- <right_val>0.6044626832008362</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 16 4 12 -1.</_>
- <_>9 16 2 6 2.</_>
- <_>7 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2578560747206211e-003</threshold>
- <left_val>-0.0853065028786659</left_val>
- <right_val>0.1099772974848747</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 25 12 3 -1.</_>
- <_>5 25 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.7562908194959164e-004</threshold>
- <left_val>0.0974123030900955</left_val>
- <right_val>-0.3625175952911377</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 16 4 12 -1.</_>
- <_>9 16 2 6 2.</_>
- <_>7 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0530881099402905</threshold>
- <left_val>-3.5328660160303116e-003</left_val>
- <right_val>-0.6069478988647461</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 4 12 -1.</_>
- <_>3 16 2 6 2.</_>
- <_>5 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5448880149051547e-003</threshold>
- <left_val>-0.2241913974285126</left_val>
- <right_val>0.1783272027969360</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 17 4 7 -1.</_>
- <_>7 17 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0123757002875209</threshold>
- <left_val>-0.0357789508998394</left_val>
- <right_val>0.2955793142318726</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 17 4 7 -1.</_>
- <_>5 17 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9611927717924118e-003</threshold>
- <left_val>-0.0736030265688896</left_val>
- <right_val>0.4869956970214844</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 6 6 -1.</_>
- <_>6 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3732418715953827e-003</threshold>
- <left_val>0.0957865566015244</left_val>
- <right_val>-0.3922258019447327</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 4 15 -1.</_>
- <_>6 8 2 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9954452812671661e-003</threshold>
- <left_val>-0.2959701120853424</left_val>
- <right_val>0.1324651986360550</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 22 2 4 -1.</_>
- <_>7 22 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0176241490989923</threshold>
- <left_val>0.0116297602653503</left_val>
- <right_val>-0.3759419023990631</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 22 4 2 -1.</_>
- <_>7 22 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.1538967788219452e-004</threshold>
- <left_val>0.1840317994356155</left_val>
- <right_val>-0.2110694944858551</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 12 3 -1.</_>
- <_>1 15 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0659108385443687</threshold>
- <left_val>0.0380509383976460</left_val>
- <right_val>-0.8735622167587280</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 15 6 12 -1.</_>
- <_>4 15 3 6 2.</_>
- <_>7 21 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.1749828532338142e-003</threshold>
- <left_val>-0.3011561930179596</left_val>
- <right_val>0.0813454464077950</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 16 3 12 -1.</_>
- <_>8 16 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0382750108838081</threshold>
- <left_val>0.3823896050453186</left_val>
- <right_val>-0.0559699796140194</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 4 18 -1.</_>
- <_>2 9 2 9 2.</_>
- <_>4 18 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2501420937478542e-003</threshold>
- <left_val>-0.2152089029550552</left_val>
- <right_val>0.1341784000396729</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 10 4 6 -1.</_>
- <_>8 10 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6356219574809074e-003</threshold>
- <left_val>-0.0915983468294144</left_val>
- <right_val>0.2693023085594177</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 4 12 -1.</_>
- <_>0 16 2 6 2.</_>
- <_>2 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1177428103983402e-003</threshold>
- <left_val>-0.3009229898452759</left_val>
- <right_val>0.1044047027826309</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 22 12 4 -1.</_>
- <_>6 22 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0601951293647289</threshold>
- <left_val>0.1851283013820648</left_val>
- <right_val>-0.0630041509866714</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 24 9 4 -1.</_>
- <_>3 24 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0464735589921474</threshold>
- <left_val>0.0375593788921833</left_val>
- <right_val>-0.8111779093742371</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 13 4 12 -1.</_>
- <_>9 17 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2262150887399912e-003</threshold>
- <left_val>-0.1226280033588409</left_val>
- <right_val>0.0832881927490234</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 10 4 6 -1.</_>
- <_>4 10 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0166707802563906</threshold>
- <left_val>-0.0527744293212891</left_val>
- <right_val>0.5488799810409546</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 8 6 -1.</_>
- <_>4 10 8 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0630935281515121</threshold>
- <left_val>-0.7470207214355469</left_val>
- <right_val>0.0270495098084211</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 22 12 4 -1.</_>
- <_>4 22 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7139958739280701e-004</threshold>
- <left_val>0.0921770632266998</left_val>
- <right_val>-0.2999443113803864</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 21 9 7 -1.</_>
- <_>7 21 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0891078934073448</threshold>
- <left_val>-0.3893744051456451</left_val>
- <right_val>0.0298317596316338</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 22 4 6 -1.</_>
- <_>7 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7469590238761157e-004</threshold>
- <left_val>0.1611765027046204</left_val>
- <right_val>-0.2063910067081451</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 2 3 12 -1.</_>
- <_>10 2 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1986931096762419e-003</threshold>
- <left_val>0.1428606957197189</left_val>
- <right_val>-0.1236654967069626</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 3 12 -1.</_>
- <_>3 3 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1864708978682756e-003</threshold>
- <left_val>-0.1743519008159638</left_val>
- <right_val>0.1658601015806198</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 4 6 -1.</_>
- <_>8 4 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0127384504303336</threshold>
- <left_val>0.0483400784432888</left_val>
- <right_val>-0.0812979266047478</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 6 4 -1.</_>
- <_>6 4 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0123834004625678</threshold>
- <left_val>-0.3746446073055267</left_val>
- <right_val>0.0812059789896011</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 8 16 -1.</_>
- <_>8 6 4 8 2.</_>
- <_>4 14 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1209435015916824</threshold>
- <left_val>-0.9190897941589356</left_val>
- <right_val>0.0170078407973051</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 8 16 -1.</_>
- <_>2 6 4 8 2.</_>
- <_>6 14 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0489029809832573</threshold>
- <left_val>-0.0706190690398216</left_val>
- <right_val>0.5136343836784363</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 8 8 -1.</_>
- <_>6 8 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9585320260375738e-003</threshold>
- <left_val>0.0998083725571632</left_val>
- <right_val>-0.1068151965737343</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 12 10 -1.</_>
- <_>4 6 4 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2964532077312470</threshold>
- <left_val>-0.9121376276016235</left_val>
- <right_val>0.0322923585772514</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 10 6 7 -1.</_>
- <_>10 12 2 7 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1074197962880135</threshold>
- <left_val>-2.3814958985894918e-003</left_val>
- <right_val>-0.7183641791343689</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 10 7 6 -1.</_>
- <_>4 12 7 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0420404411852360</threshold>
- <left_val>0.3084833920001984</left_val>
- <right_val>-0.0996473729610443</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 4 7 -1.</_>
- <_>5 11 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8270778283476830e-003</threshold>
- <left_val>0.0833021327853203</left_val>
- <right_val>-0.3643383979797363</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 12 16 -1.</_>
- <_>1 11 6 8 2.</_>
- <_>7 19 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0110720898956060</threshold>
- <left_val>-0.2588649988174439</left_val>
- <right_val>0.1257940977811813</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 3 13 -1.</_>
- <_>7 9 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0163990296423435</threshold>
- <left_val>0.3019199073314667</left_val>
- <right_val>-0.0493520908057690</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 6 4 -1.</_>
- <_>3 11 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0852450688835233e-004</threshold>
- <left_val>0.1250873059034348</left_val>
- <right_val>-0.2199361026287079</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 22 4 6 -1.</_>
- <_>9 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0301748607307673</threshold>
- <left_val>-0.6535304784774780</left_val>
- <right_val>0.0101856999099255</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 7 4 -1.</_>
- <_>2 11 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9148568175733089e-003</threshold>
- <left_val>-0.2078171968460083</left_val>
- <right_val>0.1246095001697540</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 3 12 -1.</_>
- <_>8 15 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7260989882051945e-003</threshold>
- <left_val>0.1244395002722740</left_val>
- <right_val>-0.1554064005613327</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 15 8 3 -1.</_>
- <_>6 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0174329001456499</threshold>
- <left_val>-0.0597618892788887</left_val>
- <right_val>0.4943063855171204</right_val></_></_></trees>
- <stage_threshold>-1.0450960397720337</stage_threshold>
- <parent>13</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 15 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 12 19 -1.</_>
- <_>4 7 6 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2145441025495529</threshold>
- <left_val>0.5164629817008972</left_val>
- <right_val>-0.2201218008995056</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 4 12 -1.</_>
- <_>8 9 2 6 2.</_>
- <_>6 15 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0137962102890015</threshold>
- <left_val>0.0505414195358753</left_val>
- <right_val>-0.2330507040023804</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 4 6 -1.</_>
- <_>1 15 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.6883601509034634e-004</threshold>
- <left_val>-0.2479321062564850</left_val>
- <right_val>0.2053676992654800</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 22 8 6 -1.</_>
- <_>8 22 4 3 2.</_>
- <_>4 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6670728847384453e-003</threshold>
- <left_val>-0.2254648953676224</left_val>
- <right_val>6.4493361860513687e-003</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 22 8 6 -1.</_>
- <_>2 22 4 3 2.</_>
- <_>6 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1733778994530439e-003</threshold>
- <left_val>-0.2116402983665466</left_val>
- <right_val>0.2181985974311829</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 17 4 6 -1.</_>
- <_>9 17 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2321940157562494e-003</threshold>
- <left_val>0.0677922964096069</left_val>
- <right_val>-0.1166194006800652</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 4 6 -1.</_>
- <_>3 17 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9950752183794975e-003</threshold>
- <left_val>-0.4238491058349609</left_val>
- <right_val>0.1320454031229019</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 6 4 -1.</_>
- <_>4 7 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0269428305327892</threshold>
- <left_val>-0.1016191020607948</left_val>
- <right_val>0.4809207916259766</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 4 6 -1.</_>
- <_>7 3 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0669070035219193</threshold>
- <left_val>-0.0845523476600647</left_val>
- <right_val>0.4927454888820648</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 24 6 4 -1.</_>
- <_>6 24 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6729519702494144e-003</threshold>
- <left_val>0.0921978726983070</left_val>
- <right_val>-0.2295431047677994</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 21 12 3 -1.</_>
- <_>5 21 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0138087300583720</threshold>
- <left_val>-0.0609050989151001</left_val>
- <right_val>0.5849006175994873</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 17 2 7 -1.</_>
- <_>7 17 1 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0236271601170301</threshold>
- <left_val>-0.8834797739982605</left_val>
- <right_val>9.7397705540060997e-003</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 17 7 2 -1.</_>
- <_>7 17 7 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0139276403933764</threshold>
- <left_val>-0.6530944108963013</left_val>
- <right_val>0.0528865084052086</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 12 3 16 -1.</_>
- <_>6 20 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6122989840805531e-003</threshold>
- <left_val>-0.2636939883232117</left_val>
- <right_val>0.1059527993202210</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 24 9 4 -1.</_>
- <_>5 24 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0529494509100914</threshold>
- <left_val>-0.7340934276580811</left_val>
- <right_val>0.0470140390098095</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 25 12 2 -1.</_>
- <_>2 25 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0174148194491863</threshold>
- <left_val>0.0176837407052517</left_val>
- <right_val>-0.5878229737281799</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 25 12 2 -1.</_>
- <_>6 25 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2427799305878580e-004</threshold>
- <left_val>0.1388638019561768</left_val>
- <right_val>-0.3060975074768066</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 11 6 8 -1.</_>
- <_>4 15 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0436137914657593</threshold>
- <left_val>0.5485711097717285</left_val>
- <right_val>-0.0673488527536392</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 4 6 -1.</_>
- <_>7 0 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.3427510000765324e-004</threshold>
- <left_val>0.1839264035224915</left_val>
- <right_val>-0.1749247014522553</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 10 7 -1.</_>
- <_>2 2 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0796064212918282</threshold>
- <left_val>0.0456521511077881</left_val>
- <right_val>-0.6391065716743469</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 12 25 -1.</_>
- <_>3 1 6 25 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0251207500696182</threshold>
- <left_val>0.1004699021577835</left_val>
- <right_val>-0.2782456874847412</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 14 12 6 -1.</_>
- <_>4 14 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0329769104719162</threshold>
- <left_val>-0.0593111999332905</left_val>
- <right_val>0.6532837748527527</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 26 12 2 -1.</_>
- <_>6 26 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7845480255782604e-003</threshold>
- <left_val>-0.2419032007455826</left_val>
- <right_val>0.1309728026390076</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 15 3 12 -1.</_>
- <_>7 15 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4495685771107674e-003</threshold>
- <left_val>-0.0931000337004662</left_val>
- <right_val>0.2378582060337067</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 2 12 -1.</_>
- <_>7 7 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5168890133500099e-003</threshold>
- <left_val>0.1360431015491486</left_val>
- <right_val>-0.2815954089164734</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 4 6 -1.</_>
- <_>5 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6242460589855909e-003</threshold>
- <left_val>0.0898342728614807</left_val>
- <right_val>-0.3772903978824616</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 20 6 6 -1.</_>
- <_>6 20 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0446261987090111</threshold>
- <left_val>0.3832083940505981</left_val>
- <right_val>-0.0962854698300362</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 8 4 -1.</_>
- <_>3 10 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4027470024302602e-004</threshold>
- <left_val>-0.1726175993680954</left_val>
- <right_val>0.1657430976629257</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 9 18 -1.</_>
- <_>3 11 3 6 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0391159094870090</threshold>
- <left_val>0.0786521136760712</left_val>
- <right_val>-0.3568983972072601</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 4 6 -1.</_>
- <_>8 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0666820034384727</threshold>
- <left_val>-0.8800150752067566</left_val>
- <right_val>9.0465601533651352e-003</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 4 6 -1.</_>
- <_>4 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3860351219773293e-003</threshold>
- <left_val>-0.0759362131357193</left_val>
- <right_val>0.3862276971340179</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 4 12 -1.</_>
- <_>10 8 2 6 2.</_>
- <_>8 14 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0435498990118504</threshold>
- <left_val>-0.0256800092756748</left_val>
- <right_val>0.7408592104911804</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 6 8 -1.</_>
- <_>4 10 3 4 2.</_>
- <_>7 14 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8360930262133479e-003</threshold>
- <left_val>0.1118386983871460</left_val>
- <right_val>-0.3336220085620880</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 4 6 -1.</_>
- <_>7 15 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.6189280431717634e-003</threshold>
- <left_val>0.0189690608531237</left_val>
- <right_val>-0.1513012945652008</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 6 4 -1.</_>
- <_>7 15 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.8807038906961679e-003</threshold>
- <left_val>0.0942855924367905</left_val>
- <right_val>-0.3110074996948242</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 13 15 -1.</_>
- <_>1 14 13 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0324896499514580</threshold>
- <left_val>-0.2190852016210556</left_val>
- <right_val>0.1137090027332306</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 3 25 -1.</_>
- <_>6 1 1 25 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0382537096738815</threshold>
- <left_val>0.3790800869464874</left_val>
- <right_val>-0.0682981386780739</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 15 3 12 -1.</_>
- <_>7 15 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0184787698090076</threshold>
- <left_val>0.2962324917316437</left_val>
- <right_val>-0.0606829114258289</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 4 16 -1.</_>
- <_>0 7 2 8 2.</_>
- <_>2 15 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0155697502195835</threshold>
- <left_val>0.0857312902808189</left_val>
- <right_val>-0.3317534029483795</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 6 4 -1.</_>
- <_>4 4 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7486449796706438e-003</threshold>
- <left_val>0.1255429983139038</left_val>
- <right_val>-0.1979753971099854</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 10 10 -1.</_>
- <_>0 5 10 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0909955576062202</threshold>
- <left_val>-0.0675900131464005</left_val>
- <right_val>0.5267614722251892</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 6 8 -1.</_>
- <_>11 5 3 4 2.</_>
- <_>8 9 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0815969482064247e-003</threshold>
- <left_val>0.2188315987586975</left_val>
- <right_val>-0.1579461991786957</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 14 12 14 -1.</_>
- <_>1 14 6 7 2.</_>
- <_>7 21 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0136338500306010</threshold>
- <left_val>0.1246353015303612</left_val>
- <right_val>-0.2339652925729752</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 6 18 -1.</_>
- <_>9 7 2 6 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3204661905765533</threshold>
- <left_val>0.4580850899219513</left_val>
- <right_val>-0.0275732595473528</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 14 8 -1.</_>
- <_>0 18 7 4 2.</_>
- <_>7 22 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6630940157920122e-003</threshold>
- <left_val>-0.2400335073471069</left_val>
- <right_val>0.1225626021623612</right_val></_></_></trees>
- <stage_threshold>-0.9280924201011658</stage_threshold>
- <parent>14</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 16 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 8 23 -1.</_>
- <_>6 3 4 23 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1590135991573334</threshold>
- <left_val>0.4353503882884979</left_val>
- <right_val>-0.1706434935331345</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 18 4 9 -1.</_>
- <_>10 18 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.1815905869007111e-003</threshold>
- <left_val>-0.4628070890903473</left_val>
- <right_val>0.0885146036744118</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 25 8 3 -1.</_>
- <_>4 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.1978997766564135e-006</threshold>
- <left_val>0.1624667048454285</left_val>
- <right_val>-0.3189904093742371</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 26 12 2 -1.</_>
- <_>2 26 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0141281802207232</threshold>
- <left_val>0.0432598814368248</left_val>
- <right_val>-0.5932887792587280</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 22 4 6 -1.</_>
- <_>3 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5496661961078644e-003</threshold>
- <left_val>-0.6398767232894898</left_val>
- <right_val>0.0462039299309254</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 2 12 -1.</_>
- <_>6 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4156800936907530e-003</threshold>
- <left_val>0.2600989937782288</left_val>
- <right_val>-0.1709903031587601</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 14 6 14 -1.</_>
- <_>2 14 3 7 2.</_>
- <_>5 21 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4057718478143215e-003</threshold>
- <left_val>-0.2267919927835465</left_val>
- <right_val>0.1639396995306015</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 6 6 -1.</_>
- <_>6 8 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0338254384696484</threshold>
- <left_val>-0.7283406257629395</left_val>
- <right_val>0.0516999587416649</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 8 6 -1.</_>
- <_>0 18 4 3 2.</_>
- <_>4 21 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0296280104666948</threshold>
- <left_val>0.0343999303877354</left_val>
- <right_val>-0.6940060853958130</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 13 6 11 -1.</_>
- <_>9 13 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1229469031095505</threshold>
- <left_val>3.3281920477747917e-003</left_val>
- <right_val>-0.7660214900970459</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 12 7 -1.</_>
- <_>4 16 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0988161712884903</threshold>
- <left_val>0.3143998086452484</left_val>
- <right_val>-0.1013118028640747</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 4 9 -1.</_>
- <_>7 15 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3952430821955204e-003</threshold>
- <left_val>0.0333622097969055</left_val>
- <right_val>-0.1316892951726914</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 4 9 -1.</_>
- <_>5 15 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0245866999030113</threshold>
- <left_val>-0.0652275532484055</left_val>
- <right_val>0.6816970109939575</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 18 4 8 -1.</_>
- <_>10 18 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8804800286889076e-003</threshold>
- <left_val>0.1292610019445419</left_val>
- <right_val>-0.4378339052200317</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 9 6 -1.</_>
- <_>2 9 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.1016880469396710e-004</threshold>
- <left_val>0.1369279026985169</left_val>
- <right_val>-0.1982776969671249</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 12 6 -1.</_>
- <_>1 12 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0161782596260309</threshold>
- <left_val>0.0992875024676323</left_val>
- <right_val>-0.3409053981304169</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 5 12 -1.</_>
- <_>3 11 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1052768006920815</threshold>
- <left_val>-0.9173877239227295</left_val>
- <right_val>0.0326749682426453</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 8 4 -1.</_>
- <_>3 8 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0370904989540577</threshold>
- <left_val>0.4204797148704529</left_val>
- <right_val>-0.0710027664899826</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 6 6 -1.</_>
- <_>4 8 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0387211404740810</threshold>
- <left_val>-0.0732844322919846</left_val>
- <right_val>0.4820480942726135</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 26 12 2 -1.</_>
- <_>1 26 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4923329949378967e-003</threshold>
- <left_val>-0.2871321141719818</left_val>
- <right_val>0.1039713025093079</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 4 6 -1.</_>
- <_>7 7 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0112144602462649</threshold>
- <left_val>-0.5163223147392273</left_val>
- <right_val>0.0543844103813171</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 6 5 -1.</_>
- <_>7 5 3 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.2951549908611923e-004</threshold>
- <left_val>-0.1635524034500122</left_val>
- <right_val>0.0772165581583977</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 3 13 -1.</_>
- <_>6 9 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0257446095347404</threshold>
- <left_val>-0.0573031008243561</left_val>
- <right_val>0.4952527880668640</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 18 6 10 -1.</_>
- <_>8 18 3 5 2.</_>
- <_>5 23 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0379986204206944</threshold>
- <left_val>0.0276545807719231</left_val>
- <right_val>-0.4847078919410706</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 18 6 10 -1.</_>
- <_>3 18 3 5 2.</_>
- <_>6 23 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3906941059976816e-003</threshold>
- <left_val>-0.2010668069124222</left_val>
- <right_val>0.1620907932519913</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 7 6 -1.</_>
- <_>7 15 7 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1289131939411163</threshold>
- <left_val>-0.6972699761390686</left_val>
- <right_val>0.0172267593443394</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 23 9 5 -1.</_>
- <_>3 23 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4630720559507608e-004</threshold>
- <left_val>-0.2710422873497009</left_val>
- <right_val>0.1089453995227814</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 7 6 -1.</_>
- <_>7 15 7 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.2807278912514448e-003</threshold>
- <left_val>-0.0419495105743408</left_val>
- <right_val>0.0821790024638176</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 6 7 -1.</_>
- <_>7 15 3 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0512044988572598</threshold>
- <left_val>0.0481804087758064</left_val>
- <right_val>-0.6634492278099060</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 6 12 -1.</_>
- <_>10 2 3 6 2.</_>
- <_>7 8 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0457515083253384</threshold>
- <left_val>0.1935078948736191</left_val>
- <right_val>-0.0372233018279076</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 6 4 -1.</_>
- <_>7 5 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0143915796652436</threshold>
- <left_val>0.1082883030176163</left_val>
- <right_val>-0.2352464050054550</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 6 10 -1.</_>
- <_>10 3 3 5 2.</_>
- <_>7 8 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6694227755069733e-003</threshold>
- <left_val>0.0774298831820488</left_val>
- <right_val>-0.0466584414243698</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 6 10 -1.</_>
- <_>1 3 3 5 2.</_>
- <_>4 8 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0493752099573612</threshold>
- <left_val>0.3560423851013184</left_val>
- <right_val>-0.0817319303750992</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 12 4 -1.</_>
- <_>1 7 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0493589788675308</threshold>
- <left_val>0.0501068383455276</left_val>
- <right_val>-0.5927317142486572</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 6 4 -1.</_>
- <_>5 1 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0530142895877361</threshold>
- <left_val>0.0331554301083088</left_val>
- <right_val>-0.7078366875648499</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 14 10 -1.</_>
- <_>0 5 14 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0120867397636175</threshold>
- <left_val>0.1494368016719818</left_val>
- <right_val>-0.1897324025630951</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 10 18 -1.</_>
- <_>0 8 5 9 2.</_>
- <_>5 17 5 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1357958018779755</threshold>
- <left_val>0.4586344063282013</left_val>
- <right_val>-0.0719983428716660</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 16 2 12 -1.</_>
- <_>7 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9633909687399864e-003</threshold>
- <left_val>-0.1042060032486916</left_val>
- <right_val>0.1846560984849930</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 21 8 7 -1.</_>
- <_>4 21 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.3589266762137413e-003</threshold>
- <left_val>0.0539574585855007</left_val>
- <right_val>-0.4733794033527374</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 21 8 6 -1.</_>
- <_>5 21 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3361759744584560e-003</threshold>
- <left_val>-0.0571734011173248</left_val>
- <right_val>0.5095887184143066</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 6 8 -1.</_>
- <_>6 10 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.5009206086397171e-003</threshold>
- <left_val>0.0940768197178841</left_val>
- <right_val>-0.2926596999168396</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 3 12 -1.</_>
- <_>9 2 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0190899204462767</threshold>
- <left_val>0.3542652130126953</left_val>
- <right_val>-0.0558761097490788</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 3 12 -1.</_>
- <_>4 2 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6061830101534724e-003</threshold>
- <left_val>0.1663406044244766</left_val>
- <right_val>-0.1593942940235138</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 26 12 2 -1.</_>
- <_>2 26 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.8830653801560402e-003</threshold>
- <left_val>-0.2606467008590698</left_val>
- <right_val>0.0552368983626366</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 25 12 3 -1.</_>
- <_>7 25 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2838371116667986e-003</threshold>
- <left_val>-0.2492434978485107</left_val>
- <right_val>0.1428827941417694</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 20 3 5 -1.</_>
- <_>8 21 1 5 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0192042198032141</threshold>
- <left_val>-0.0261326599866152</left_val>
- <right_val>0.3293955028057098</right_val></_></_></trees>
- <stage_threshold>-0.8597478270530701</stage_threshold>
- <parent>15</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 17 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 8 11 -1.</_>
- <_>5 15 4 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1014143005013466</threshold>
- <left_val>0.4719781875610352</left_val>
- <right_val>-0.1812396049499512</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 12 21 -1.</_>
- <_>5 8 4 7 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.7670872211456299</threshold>
- <left_val>0.4321441948413849</left_val>
- <right_val>-0.1070564016699791</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 22 4 6 -1.</_>
- <_>2 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.0198869109153748e-003</threshold>
- <left_val>0.0848589166998863</left_val>
- <right_val>-0.5016363263130188</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 23 9 4 -1.</_>
- <_>8 23 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0421738885343075</threshold>
- <left_val>0.0436127297580242</left_val>
- <right_val>-0.6513525247573853</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 23 9 4 -1.</_>
- <_>3 23 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0101539343595505e-003</threshold>
- <left_val>-0.2415114045143127</left_val>
- <right_val>0.1702917963266373</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 4 12 -1.</_>
- <_>8 3 2 6 2.</_>
- <_>6 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3389269588515162e-003</threshold>
- <left_val>-0.1842131018638611</left_val>
- <right_val>0.0922170132398605</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 2 24 -1.</_>
- <_>6 4 1 12 2.</_>
- <_>7 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3321550581604242e-003</threshold>
- <left_val>-0.1670908927917481</left_val>
- <right_val>0.1923999935388565</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 4 6 -1.</_>
- <_>5 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5524900518357754e-003</threshold>
- <left_val>0.1111333966255188</left_val>
- <right_val>-0.3120034933090210</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 4 6 -1.</_>
- <_>4 7 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0238092597573996</threshold>
- <left_val>-0.0640965998172760</left_val>
- <right_val>0.5616208910942078</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 6 20 -1.</_>
- <_>4 18 6 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0280854292213917</threshold>
- <left_val>-0.2239045947790146</left_val>
- <right_val>0.1683211028575897</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 3 12 -1.</_>
- <_>2 16 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7726151533424854e-003</threshold>
- <left_val>-0.4615002870559692</left_val>
- <right_val>0.0494330003857613</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 6 16 -1.</_>
- <_>8 16 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1053185015916824</threshold>
- <left_val>0.0346832908689976</left_val>
- <right_val>-0.6428365111351013</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 4 6 -1.</_>
- <_>3 17 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2594000957906246e-003</threshold>
- <left_val>-0.4041875898838043</left_val>
- <right_val>0.0609010681509972</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 14 6 9 -1.</_>
- <_>9 14 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7005542591214180e-003</threshold>
- <left_val>-0.0758324787020683</left_val>
- <right_val>0.0894848927855492</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 14 6 9 -1.</_>
- <_>3 14 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0536715202033520</threshold>
- <left_val>0.7371097207069397</left_val>
- <right_val>-0.0409931503236294</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 4 18 -1.</_>
- <_>10 0 2 9 2.</_>
- <_>8 9 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0345212109386921</threshold>
- <left_val>-0.0137315401807427</left_val>
- <right_val>0.2729964852333069</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 4 18 -1.</_>
- <_>2 0 2 9 2.</_>
- <_>4 9 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2156880050897598e-003</threshold>
- <left_val>0.1272314935922623</left_val>
- <right_val>-0.2332960963249207</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 14 2 12 -1.</_>
- <_>11 14 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7666360363364220e-003</threshold>
- <left_val>0.0579776912927628</left_val>
- <right_val>-0.2003654986619949</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 14 2 12 -1.</_>
- <_>2 14 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8101759273558855e-003</threshold>
- <left_val>0.0738669112324715</left_val>
- <right_val>-0.3078007102012634</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 11 3 12 -1.</_>
- <_>9 11 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0250196307897568</threshold>
- <left_val>0.4350267052650452</left_val>
- <right_val>-0.0482944287359715</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 12 6 -1.</_>
- <_>4 7 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.7328815609216690e-003</threshold>
- <left_val>-0.0830639526247978</left_val>
- <right_val>0.3000870048999786</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 12 9 -1.</_>
- <_>4 1 6 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3074519596993923e-003</threshold>
- <left_val>0.1359129995107651</left_val>
- <right_val>-0.2247667014598846</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 12 20 -1.</_>
- <_>1 3 6 10 2.</_>
- <_>7 13 6 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1917860954999924</threshold>
- <left_val>-0.8793690204620361</left_val>
- <right_val>0.0279150791466236</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 6 10 -1.</_>
- <_>7 8 3 5 2.</_>
- <_>4 13 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0892169130966067e-004</threshold>
- <left_val>-0.2289137989282608</left_val>
- <right_val>0.1023617014288902</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 8 3 -1.</_>
- <_>6 5 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.7072591520845890e-003</threshold>
- <left_val>-0.2491775006055832</left_val>
- <right_val>0.0943151563405991</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 8 7 -1.</_>
- <_>5 15 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1091611012816429</threshold>
- <left_val>0.5566406846046448</left_val>
- <right_val>-0.0474190413951874</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 14 12 12 -1.</_>
- <_>4 18 4 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0637037828564644</threshold>
- <left_val>-0.2150306999683380</left_val>
- <right_val>0.1065587997436523</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 4 16 -1.</_>
- <_>5 16 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0267041604965925</threshold>
- <left_val>0.3301782011985779</left_val>
- <right_val>-0.0935690328478813</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 21 12 6 -1.</_>
- <_>4 21 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7289129793643951e-003</threshold>
- <left_val>0.0865313410758972</left_val>
- <right_val>-0.2662309110164642</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 17 8 7 -1.</_>
- <_>4 17 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1057505011558533</threshold>
- <left_val>-1.</left_val>
- <right_val>5.9039499610662460e-003</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 17 8 7 -1.</_>
- <_>6 17 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0189048293977976</threshold>
- <left_val>-0.0620773099362850</left_val>
- <right_val>0.4779633879661560</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 6 5 -1.</_>
- <_>7 4 3 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1639672070741653</threshold>
- <left_val>-1.</left_val>
- <right_val>0.0104935104027390</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 5 6 -1.</_>
- <_>7 4 5 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0104537103325129</threshold>
- <left_val>0.1268896013498306</left_val>
- <right_val>-0.2035153061151505</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 6 7 -1.</_>
- <_>8 3 3 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1372427046298981</threshold>
- <left_val>9.6491426229476929e-003</left_val>
- <right_val>-0.3790872991085053</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 7 6 -1.</_>
- <_>6 3 7 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.0359591841697693e-003</threshold>
- <left_val>-0.2593623101711273</left_val>
- <right_val>0.1174589022994041</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 2 22 -1.</_>
- <_>7 4 1 22 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5677291713654995e-003</threshold>
- <left_val>-0.0604652911424637</left_val>
- <right_val>0.1563781946897507</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 2 22 -1.</_>
- <_>6 4 1 22 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0303469896316528</threshold>
- <left_val>0.3840340077877045</left_val>
- <right_val>-0.0614773593842983</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 2 12 -1.</_>
- <_>7 8 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0175463296473026</threshold>
- <left_val>0.0286432299762964</left_val>
- <right_val>-0.4767946898937225</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 2 12 -1.</_>
- <_>6 8 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5566740445792675e-003</threshold>
- <left_val>-0.3126108944416046</left_val>
- <right_val>0.1088562980294228</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 10 5 -1.</_>
- <_>3 8 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0698510929942131</threshold>
- <left_val>-0.7099410295486450</left_val>
- <right_val>0.0185367707163095</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 6 6 -1.</_>
- <_>6 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4962710338295437e-005</threshold>
- <left_val>0.1028714030981064</left_val>
- <right_val>-0.2292115986347199</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 4 16 -1.</_>
- <_>10 8 2 8 2.</_>
- <_>8 16 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0727050006389618</threshold>
- <left_val>0.4252012073993683</left_val>
- <right_val>-0.0282363407313824</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 4 16 -1.</_>
- <_>2 8 2 8 2.</_>
- <_>4 16 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0373382903635502</threshold>
- <left_val>-0.0766300335526466</left_val>
- <right_val>0.3237414956092835</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 21 12 4 -1.</_>
- <_>7 21 6 2 2.</_>
- <_>1 23 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0286909602582455</threshold>
- <left_val>0.0300294999033213</left_val>
- <right_val>-0.8400797843933106</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 2 12 -1.</_>
- <_>4 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0100197698920965</threshold>
- <left_val>-0.0790718570351601</left_val>
- <right_val>0.3401907086372376</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 6 4 -1.</_>
- <_>4 12 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9540659636259079e-003</threshold>
- <left_val>-0.2444967925548554</left_val>
- <right_val>0.1184566020965576</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 10 12 -1.</_>
- <_>2 12 10 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2879550755023956e-003</threshold>
- <left_val>0.1062875017523766</left_val>
- <right_val>-0.2204415053129196</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 17 6 8 -1.</_>
- <_>7 17 3 4 2.</_>
- <_>4 21 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0345824807882309</threshold>
- <left_val>-0.7133362889289856</left_val>
- <right_val>0.0297279208898544</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 4 3 -1.</_>
- <_>6 16 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.4701869804412127e-003</threshold>
- <left_val>0.1263066977262497</left_val>
- <right_val>-0.1826086044311523</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 20 3 5 -1.</_>
- <_>10 21 1 5 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0187925603240728</threshold>
- <left_val>0.4415951073169708</left_val>
- <right_val>-0.0629801005125046</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 14 6 -1.</_>
- <_>7 18 7 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0198302809149027</threshold>
- <left_val>-0.2830869853496552</left_val>
- <right_val>0.0921800285577774</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 3 24 -1.</_>
- <_>9 6 3 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1632145941257477</threshold>
- <left_val>-0.4135583043098450</left_val>
- <right_val>0.0115620503202081</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 3 24 -1.</_>
- <_>2 6 3 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0756249874830246</threshold>
- <left_val>0.0221054404973984</left_val>
- <right_val>-0.9143025279045105</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 4 6 -1.</_>
- <_>6 2 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2491789422929287e-003</threshold>
- <left_val>0.0919266864657402</left_val>
- <right_val>-0.1063376963138580</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 25 12 3 -1.</_>
- <_>5 25 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0633106380701065</threshold>
- <left_val>-0.7710062861442566</left_val>
- <right_val>0.0270474795252085</right_val></_></_></trees>
- <stage_threshold>-0.8670626282691956</stage_threshold>
- <parent>16</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 18 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 12 14 -1.</_>
- <_>4 4 6 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1704327017068863</threshold>
- <left_val>0.4742506146430969</left_val>
- <right_val>-0.1858147978782654</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 3 12 -1.</_>
- <_>7 16 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0279671307653189</threshold>
- <left_val>-0.0862911790609360</left_val>
- <right_val>0.5325798988342285</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 18 4 6 -1.</_>
- <_>7 18 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.0941249385941774e-004</threshold>
- <left_val>-0.2719970047473908</left_val>
- <right_val>0.1361507028341293</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 3 12 -1.</_>
- <_>7 16 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0336372405290604</threshold>
- <left_val>0.2829976081848145</left_val>
- <right_val>-0.0223564691841602</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 3 12 -1.</_>
- <_>6 16 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5356429181993008e-003</threshold>
- <left_val>0.1613575965166092</left_val>
- <right_val>-0.2016250044107437</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 6 4 -1.</_>
- <_>7 4 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.3124668989330530e-003</threshold>
- <left_val>-0.0796776190400124</left_val>
- <right_val>0.1437523961067200</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 7 4 -1.</_>
- <_>7 1 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0548887401819229</threshold>
- <left_val>0.6656386256217957</left_val>
- <right_val>-0.0535266697406769</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 6 4 -1.</_>
- <_>7 2 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.3796600550413132e-003</threshold>
- <left_val>-0.0964008867740631</left_val>
- <right_val>0.0932230502367020</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 8 6 -1.</_>
- <_>5 10 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0602832399308681</threshold>
- <left_val>-0.5432562232017517</left_val>
- <right_val>0.0545159690082073</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 20 8 8 -1.</_>
- <_>7 20 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4590855985879898e-003</threshold>
- <left_val>0.0501895211637020</left_val>
- <right_val>-0.3763839900493622</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 15 8 5 -1.</_>
- <_>6 15 4 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.8549430426210165e-003</threshold>
- <left_val>0.1310580968856812</left_val>
- <right_val>-0.2490307986736298</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 10 6 -1.</_>
- <_>7 7 5 3 2.</_>
- <_>2 10 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0206082500517368</threshold>
- <left_val>-0.4339326024055481</left_val>
- <right_val>0.0609189309179783</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 20 4 4 -1.</_>
- <_>6 21 4 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0100884195417166</threshold>
- <left_val>0.2943368852138519</left_val>
- <right_val>-0.1009266003966332</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 24 12 4 -1.</_>
- <_>4 24 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0594313405454159</threshold>
- <left_val>-0.9010205268859863</left_val>
- <right_val>0.0273306891322136</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 6 6 -1.</_>
- <_>6 4 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4024050217121840e-003</threshold>
- <left_val>0.1275802999734879</left_val>
- <right_val>-0.1913405954837799</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 12 24 -1.</_>
- <_>7 4 6 12 2.</_>
- <_>1 16 6 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0273728203028440</threshold>
- <left_val>-0.2805157899856567</left_val>
- <right_val>0.1089297980070114</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 3 15 -1.</_>
- <_>4 9 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0738175511360168</threshold>
- <left_val>0.3663662075996399</left_val>
- <right_val>-0.0712614730000496</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 3 8 -1.</_>
- <_>11 3 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0693658664822578</threshold>
- <left_val>0.4475974142551422</left_val>
- <right_val>-0.0351121984422207</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 2 13 -1.</_>
- <_>5 9 1 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2530760141089559e-003</threshold>
- <left_val>0.1048106998205185</left_val>
- <right_val>-0.2533156871795654</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 4 6 -1.</_>
- <_>6 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2429681159555912e-003</threshold>
- <left_val>-0.2108380943536758</left_val>
- <right_val>0.0897550135850906</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 17 8 3 -1.</_>
- <_>6 17 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0161152593791485</threshold>
- <left_val>-0.0580191612243652</left_val>
- <right_val>0.5575944185256958</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 11 6 8 -1.</_>
- <_>7 11 3 4 2.</_>
- <_>4 15 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2562932725995779e-004</threshold>
- <left_val>-0.2161120027303696</left_val>
- <right_val>0.1221512034535408</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 14 27 -1.</_>
- <_>0 9 14 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.7664182782173157</threshold>
- <left_val>-0.6364763975143433</left_val>
- <right_val>0.0339151211082935</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 4 6 -1.</_>
- <_>5 11 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4419458542251959e-006</threshold>
- <left_val>0.0953467115759850</left_val>
- <right_val>-0.2395074069499970</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 4 12 -1.</_>
- <_>5 5 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7739300751127303e-004</threshold>
- <left_val>0.1448128074407578</left_val>
- <right_val>-0.1847649067640305</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 4 9 -1.</_>
- <_>6 6 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0767296031117439</threshold>
- <left_val>0.0117427203804255</left_val>
- <right_val>-0.9621391892433167</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 4 9 -1.</_>
- <_>4 6 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4697099365293980e-003</threshold>
- <left_val>-0.2338539063930512</left_val>
- <right_val>0.1046433970332146</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 5 4 6 -1.</_>
- <_>9 5 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0759118124842644</threshold>
- <left_val>6.7219119518995285e-003</left_val>
- <right_val>-0.4231118857860565</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 6 4 -1.</_>
- <_>5 5 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.3202589303255081e-003</threshold>
- <left_val>0.3212206065654755</left_val>
- <right_val>-0.0836618393659592</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 12 21 -1.</_>
- <_>4 1 6 21 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0372338183224201</threshold>
- <left_val>0.1166239008307457</left_val>
- <right_val>-0.2397601008415222</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 25 12 3 -1.</_>
- <_>5 25 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1381198894232512e-003</threshold>
- <left_val>0.0847558081150055</left_val>
- <right_val>-0.2514953017234802</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 18 4 10 -1.</_>
- <_>9 18 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4315438717603683e-003</threshold>
- <left_val>-0.1099039986729622</left_val>
- <right_val>0.0667133629322052</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 16 9 3 -1.</_>
- <_>3 17 9 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0109596000984311</threshold>
- <left_val>0.2881847023963928</left_val>
- <right_val>-0.0776968672871590</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 18 4 10 -1.</_>
- <_>9 18 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0349071696400642</threshold>
- <left_val>-0.0117123397067189</left_val>
- <right_val>0.3996582031250000</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 4 10 -1.</_>
- <_>3 18 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0133350798860192</threshold>
- <left_val>-0.4989624917507172</left_val>
- <right_val>0.0531930401921272</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 9 4 -1.</_>
- <_>4 12 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0370701104402542</threshold>
- <left_val>-0.5934662818908691</left_val>
- <right_val>0.0125023899599910</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 12 5 -1.</_>
- <_>5 0 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0911188572645187</threshold>
- <left_val>-0.6066418886184692</left_val>
- <right_val>0.0302236396819353</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 2 18 -1.</_>
- <_>7 15 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0675279572606087</threshold>
- <left_val>0.3259307146072388</left_val>
- <right_val>-0.0328103601932526</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 22 6 6 -1.</_>
- <_>2 22 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0263177193701267</threshold>
- <left_val>-0.7659987807273865</left_val>
- <right_val>0.0252636894583702</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 21 6 5 -1.</_>
- <_>5 21 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0378778390586376</threshold>
- <left_val>1.7415969632565975e-003</left_val>
- <right_val>-0.9109066724777222</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 21 6 5 -1.</_>
- <_>6 21 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6833839472383261e-003</threshold>
- <left_val>-0.0647690072655678</left_val>
- <right_val>0.3594624996185303</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 21 2 5 -1.</_>
- <_>9 21 1 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.2451170884305611e-005</threshold>
- <left_val>0.0622288994491100</left_val>
- <right_val>-0.0850693508982658</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 6 8 -1.</_>
- <_>0 17 3 4 2.</_>
- <_>3 21 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7713281451724470e-004</threshold>
- <left_val>-0.1725254952907562</left_val>
- <right_val>0.1251116991043091</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 6 6 -1.</_>
- <_>6 0 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0400960240513086e-003</threshold>
- <left_val>0.1503273993730545</left_val>
- <right_val>-0.1442324966192246</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 6 14 -1.</_>
- <_>2 1 3 7 2.</_>
- <_>5 8 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0548231489956379</threshold>
- <left_val>0.3471147119998932</left_val>
- <right_val>-0.0632942169904709</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 8 5 6 -1.</_>
- <_>6 11 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4232549583539367e-003</threshold>
- <left_val>0.0737556889653206</left_val>
- <right_val>-0.2708419859409332</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 4 6 -1.</_>
- <_>6 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3660030458122492e-003</threshold>
- <left_val>-0.2314403057098389</left_val>
- <right_val>0.0882168710231781</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 6 6 -1.</_>
- <_>4 8 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1405759723857045e-003</threshold>
- <left_val>0.1568742990493774</left_val>
- <right_val>-0.1337956041097641</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 6 4 -1.</_>
- <_>3 7 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7445020861923695e-003</threshold>
- <left_val>-0.1213240027427673</left_val>
- <right_val>0.2272326946258545</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 4 6 -1.</_>
- <_>7 6 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0165855102241039</threshold>
- <left_val>0.0546315796673298</left_val>
- <right_val>-0.1011700034141541</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 6 4 -1.</_>
- <_>4 7 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9970710165798664e-003</threshold>
- <left_val>0.1725863069295883</left_val>
- <right_val>-0.1428837031126022</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 1 4 21 -1.</_>
- <_>8 1 2 21 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0509869102388620e-003</threshold>
- <left_val>0.1088953018188477</left_val>
- <right_val>-0.1286545991897583</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 6 20 -1.</_>
- <_>4 2 2 20 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0270371790975332</threshold>
- <left_val>-0.2180904000997543</left_val>
- <right_val>0.1033558025956154</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 20 3 5 -1.</_>
- <_>10 21 1 5 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0140204904600978</threshold>
- <left_val>0.1701382994651794</left_val>
- <right_val>-0.0464837998151779</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 24 6 4 -1.</_>
- <_>3 24 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0001110173761845e-003</threshold>
- <left_val>0.0614529401063919</left_val>
- <right_val>-0.3510772883892059</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 6 6 -1.</_>
- <_>6 2 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0118885701522231</threshold>
- <left_val>-0.0656594932079315</left_val>
- <right_val>0.3412817120552063</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 4 6 -1.</_>
- <_>6 2 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0100419102236629</threshold>
- <left_val>0.1064506992697716</left_val>
- <right_val>-0.2390539944171906</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 13 2 -1.</_>
- <_>1 5 13 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.3469128003343940e-004</threshold>
- <left_val>0.1135992035269737</left_val>
- <right_val>-0.1245623007416725</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 11 6 7 -1.</_>
- <_>7 11 3 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0842861980199814</threshold>
- <left_val>0.4447234869003296</left_val>
- <right_val>-0.0466776899993420</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 16 6 4 -1.</_>
- <_>8 16 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0120847001671791</threshold>
- <left_val>-0.3138999938964844</left_val>
- <right_val>0.0818648189306259</right_val></_></_></trees>
- <stage_threshold>-0.8954405188560486</stage_threshold>
- <parent>17</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 19 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 12 24 -1.</_>
- <_>5 11 4 8 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.6687834262847900</threshold>
- <left_val>0.4141151010990143</left_val>
- <right_val>-0.1881030052900314</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 24 12 4 -1.</_>
- <_>8 24 6 2 2.</_>
- <_>2 26 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4350738860666752e-004</threshold>
- <left_val>-0.1568018049001694</left_val>
- <right_val>0.1078224033117294</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 24 12 4 -1.</_>
- <_>0 24 6 2 2.</_>
- <_>6 26 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6565280277282000e-003</threshold>
- <left_val>-0.2203073054552078</left_val>
- <right_val>0.2143961042165756</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 2 24 -1.</_>
- <_>7 4 1 12 2.</_>
- <_>6 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0192963592708111</threshold>
- <left_val>0.4202668070793152</left_val>
- <right_val>-0.0686715468764305</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 6 6 -1.</_>
- <_>6 8 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6540208645164967e-003</threshold>
- <left_val>-0.2348881959915161</left_val>
- <right_val>0.1674998998641968</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 4 9 -1.</_>
- <_>6 6 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0155219901353121</threshold>
- <left_val>0.0197856705635786</left_val>
- <right_val>-0.3918034136295319</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 8 7 -1.</_>
- <_>6 8 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0803179070353508</threshold>
- <left_val>-0.0192786995321512</left_val>
- <right_val>0.5852081775665283</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 10 7 -1.</_>
- <_>3 7 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1022005975246429</threshold>
- <left_val>-0.8146116733551025</left_val>
- <right_val>8.9545976370573044e-003</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 10 7 -1.</_>
- <_>6 7 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0106188701465726</threshold>
- <left_val>0.1804476976394653</left_val>
- <right_val>-0.2112286984920502</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 9 12 -1.</_>
- <_>7 5 3 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0986580699682236</threshold>
- <left_val>-0.0491793490946293</left_val>
- <right_val>0.2187125980854034</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 9 12 -1.</_>
- <_>4 5 3 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0667582228779793</threshold>
- <left_val>-0.2664954066276550</left_val>
- <right_val>0.1070794016122818</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 25 8 3 -1.</_>
- <_>4 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0292564593255520</threshold>
- <left_val>-0.7880920767784119</left_val>
- <right_val>5.6176739744842052e-003</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 12 7 -1.</_>
- <_>3 16 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0121261896565557</threshold>
- <left_val>0.1021850034594536</left_val>
- <right_val>-0.2289942950010300</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 17 4 7 -1.</_>
- <_>9 17 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0549196191132069</threshold>
- <left_val>-0.5364720225334168</left_val>
- <right_val>0.0142133301123977</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 4 7 -1.</_>
- <_>3 17 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0985811501741409e-003</threshold>
- <left_val>-0.3165036141872406</left_val>
- <right_val>0.0767941921949387</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 4 7 -1.</_>
- <_>7 0 2 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0625810772180557</threshold>
- <left_val>-0.4872623980045319</left_val>
- <right_val>9.1610476374626160e-003</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 7 4 -1.</_>
- <_>7 0 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0498344711959362</threshold>
- <left_val>-0.0756874829530716</left_val>
- <right_val>0.2999810874462128</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 5 6 -1.</_>
- <_>9 3 5 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1033302992582321</threshold>
- <left_val>0.0333879999816418</left_val>
- <right_val>-0.5665271878242493</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 6 12 -1.</_>
- <_>0 10 3 6 2.</_>
- <_>3 16 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0261539593338966</threshold>
- <left_val>0.4466365873813629</left_val>
- <right_val>-0.0571461506187916</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 4 12 -1.</_>
- <_>10 3 2 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0689492970705032</threshold>
- <left_val>6.6676470451056957e-003</left_val>
- <right_val>-0.9996885061264038</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 4 12 -1.</_>
- <_>2 3 2 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1299200598150492e-003</threshold>
- <left_val>-0.1825354993343353</left_val>
- <right_val>0.1254345029592514</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 10 10 -1.</_>
- <_>7 7 5 5 2.</_>
- <_>2 12 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0449918396770954</threshold>
- <left_val>-0.5640115141868591</left_val>
- <right_val>0.0372867509722710</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 4 9 -1.</_>
- <_>5 16 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0225338600575924</threshold>
- <left_val>-0.0426485016942024</left_val>
- <right_val>0.5983905196189880</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 14 11 -1.</_>
- <_>0 11 7 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1927445977926254</threshold>
- <left_val>0.0304794907569885</left_val>
- <right_val>-0.8456454873085022</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 5 6 -1.</_>
- <_>4 18 5 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.2559499898925424e-004</threshold>
- <left_val>-0.2061451971530914</left_val>
- <right_val>0.1101664975285530</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 20 2 6 -1.</_>
- <_>11 20 1 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.6584408953785896e-003</threshold>
- <left_val>0.0914329364895821</left_val>
- <right_val>-0.0828882232308388</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 4 6 -1.</_>
- <_>3 18 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3741090446710587e-003</threshold>
- <left_val>0.0807349011301994</left_val>
- <right_val>-0.3049516081809998</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 14 3 6 -1.</_>
- <_>11 15 1 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0517578013241291</threshold>
- <left_val>-0.8006712794303894</left_val>
- <right_val>2.8978339396417141e-003</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 6 3 -1.</_>
- <_>3 15 6 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.0498389601707458e-003</threshold>
- <left_val>-0.1839697062969208</left_val>
- <right_val>0.1342992931604385</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 20 3 5 -1.</_>
- <_>8 21 1 5 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.5232777744531631e-003</threshold>
- <left_val>-0.0312062408775091</left_val>
- <right_val>0.1212494000792503</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 25 8 3 -1.</_>
- <_>6 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.1075286541599780e-005</threshold>
- <left_val>0.0840176567435265</left_val>
- <right_val>-0.2504396140575409</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 15 3 12 -1.</_>
- <_>10 15 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0113628301769495</threshold>
- <left_val>-0.0762805193662643</left_val>
- <right_val>0.2055979073047638</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 15 6 2 -1.</_>
- <_>5 15 6 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.4097480345517397e-003</threshold>
- <left_val>-0.1504285037517548</left_val>
- <right_val>0.1649363934993744</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 18 2 7 -1.</_>
- <_>7 18 1 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0240569896996021</threshold>
- <left_val>0.0145665500313044</left_val>
- <right_val>-0.9088677167892456</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 20 5 3 -1.</_>
- <_>6 21 5 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0239836201071739</threshold>
- <left_val>0.3910767138004303</left_val>
- <right_val>-0.0541782006621361</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 16 2 10 -1.</_>
- <_>10 16 1 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0214383192360401</threshold>
- <left_val>-0.4854584038257599</left_val>
- <right_val>0.0404027514159679</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 16 10 2 -1.</_>
- <_>4 16 10 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0152107402682304</threshold>
- <left_val>0.0344815887510777</left_val>
- <right_val>-0.5440633296966553</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 12 6 -1.</_>
- <_>4 17 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0117129897698760</threshold>
- <left_val>-0.0652067512273788</left_val>
- <right_val>0.4100702106952667</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 15 6 8 -1.</_>
- <_>4 15 3 4 2.</_>
- <_>7 19 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3996820244938135e-004</threshold>
- <left_val>-0.1477289944887161</left_val>
- <right_val>0.1515424996614456</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 17 6 4 -1.</_>
- <_>9 19 2 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.4567480906844139e-003</threshold>
- <left_val>0.0633511170744896</left_val>
- <right_val>-0.1429782956838608</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 17 4 6 -1.</_>
- <_>5 19 4 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.2475489638745785e-003</threshold>
- <left_val>-0.1852106004953384</left_val>
- <right_val>0.1341083049774170</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 13 12 4 -1.</_>
- <_>1 13 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6904430277645588e-003</threshold>
- <left_val>0.1411253064870834</left_val>
- <right_val>-0.1877893954515457</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 8 12 -1.</_>
- <_>0 2 4 6 2.</_>
- <_>4 8 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0691810324788094</threshold>
- <left_val>0.3445147871971130</left_val>
- <right_val>-0.0846552327275276</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 2 16 -1.</_>
- <_>6 10 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0678932815790176</threshold>
- <left_val>-0.7007694244384766</left_val>
- <right_val>0.0233272593468428</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 8 4 -1.</_>
- <_>2 10 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5538747953251004e-004</threshold>
- <left_val>0.0923932567238808</left_val>
- <right_val>-0.2141647040843964</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 4 18 -1.</_>
- <_>5 19 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1796776950359345</threshold>
- <left_val>0.0291036702692509</left_val>
- <right_val>-0.7869086265563965</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 3 12 -1.</_>
- <_>0 7 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9843579977750778e-003</threshold>
- <left_val>0.1611738055944443</left_val>
- <right_val>-0.1286869943141937</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 22 12 4 -1.</_>
- <_>7 22 6 2 2.</_>
- <_>1 24 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0199734494090080</threshold>
- <left_val>0.0363502316176891</left_val>
- <right_val>-0.5940064191818237</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 19 7 2 -1.</_>
- <_>2 19 7 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.3998020272701979e-004</threshold>
- <left_val>0.1133214011788368</left_val>
- <right_val>-0.1917572021484375</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 26 12 2 -1.</_>
- <_>2 26 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0804121419787407e-003</threshold>
- <left_val>0.0536635592579842</left_val>
- <right_val>-0.2794001102447510</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 6 14 -1.</_>
- <_>0 11 3 7 2.</_>
- <_>3 18 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3341121897101402e-003</threshold>
- <left_val>-0.1679237931966782</left_val>
- <right_val>0.1211922019720078</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 3 10 -1.</_>
- <_>7 8 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.6924441382288933e-003</threshold>
- <left_val>-0.0690761879086494</left_val>
- <right_val>0.1855034977197647</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 6 6 -1.</_>
- <_>2 17 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0062309340573847e-004</threshold>
- <left_val>-0.2065404951572418</left_val>
- <right_val>0.0973372533917427</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 16 2 12 -1.</_>
- <_>9 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0269195605069399</threshold>
- <left_val>-0.0236485991626978</left_val>
- <right_val>0.6487352848052979</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 6 3 -1.</_>
- <_>5 17 6 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.7951570227742195e-003</threshold>
- <left_val>-0.2072560042142868</left_val>
- <right_val>0.1018809005618095</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 6 8 -1.</_>
- <_>10 2 2 8 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0780266225337982</threshold>
- <left_val>8.9439805597066879e-003</left_val>
- <right_val>-0.3999060988426209</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 8 6 -1.</_>
- <_>8 6 4 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1000045984983444</threshold>
- <left_val>0.3736175000667572</left_val>
- <right_val>-0.0558148212730885</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 6 21 -1.</_>
- <_>4 14 6 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1497824043035507</threshold>
- <left_val>0.3867760896682739</left_val>
- <right_val>-0.0556414015591145</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 8 18 -1.</_>
- <_>3 0 4 9 2.</_>
- <_>7 9 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0335663482546806</threshold>
- <left_val>0.0753119364380836</left_val>
- <right_val>-0.3200739026069641</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 9 10 -1.</_>
- <_>6 6 3 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2121389061212540</threshold>
- <left_val>-0.5927072167396545</left_val>
- <right_val>4.9450621008872986e-003</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 21 4 3 -1.</_>
- <_>6 22 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0144028896465898</threshold>
- <left_val>0.3247106969356537</left_val>
- <right_val>-0.0584921687841415</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 23 12 5 -1.</_>
- <_>6 23 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0184131693094969</threshold>
- <left_val>-0.0968017503619194</left_val>
- <right_val>0.1034365966916084</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 16 3 12 -1.</_>
- <_>5 16 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0162283498793840</threshold>
- <left_val>-0.0605776682496071</left_val>
- <right_val>0.3173801004886627</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 17 2 7 -1.</_>
- <_>7 17 1 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.7683439701795578e-003</threshold>
- <left_val>-0.1974215060472488</left_val>
- <right_val>0.0279964208602905</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 14 10 -1.</_>
- <_>0 5 7 5 2.</_>
- <_>7 10 7 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0191653091460466</threshold>
- <left_val>-0.2568407058715820</left_val>
- <right_val>0.0834327489137650</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 8 4 -1.</_>
- <_>3 10 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8667549486272037e-004</threshold>
- <left_val>-0.1524108052253723</left_val>
- <right_val>0.1440477967262268</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 10 4 -1.</_>
- <_>5 12 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4157401472330093e-003</threshold>
- <left_val>-0.0732076391577721</left_val>
- <right_val>0.3365561068058014</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 6 6 -1.</_>
- <_>7 0 3 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0233219005167484</threshold>
- <left_val>-0.0618982687592506</left_val>
- <right_val>0.0834899097681046</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 10 7 -1.</_>
- <_>7 3 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0119106704369187</threshold>
- <left_val>-0.1962853074073792</left_val>
- <right_val>0.0968073308467865</right_val></_></_></trees>
- <stage_threshold>-0.8581581711769104</stage_threshold>
- <parent>18</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 20 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 4 21 -1.</_>
- <_>5 7 2 21 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0941913127899170</threshold>
- <left_val>0.4702827930450440</left_val>
- <right_val>-0.1444950997829437</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 2 24 -1.</_>
- <_>7 2 1 12 2.</_>
- <_>6 14 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.9314462598413229e-004</threshold>
- <left_val>0.1774948984384537</left_val>
- <right_val>-0.1812798976898193</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 8 16 -1.</_>
- <_>3 8 8 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1278239041566849</threshold>
- <left_val>0.2973394095897675</left_val>
- <right_val>-0.1009858027100563</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 16 2 12 -1.</_>
- <_>9 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5297680404037237e-003</threshold>
- <left_val>0.1085487976670265</left_val>
- <right_val>-0.1347146928310394</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 2 12 -1.</_>
- <_>4 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5406670756638050e-003</threshold>
- <left_val>-0.2702581882476807</left_val>
- <right_val>0.1028902977705002</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 6 6 -1.</_>
- <_>5 4 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5717690112069249e-003</threshold>
- <left_val>0.1705846041440964</left_val>
- <right_val>-0.1092351973056793</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 19 4 9 -1.</_>
- <_>3 19 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0147901903837919</threshold>
- <left_val>0.0236906800419092</left_val>
- <right_val>-0.5141217708587647</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 10 4 16 -1.</_>
- <_>10 10 2 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0118378400802612</threshold>
- <left_val>0.1575475037097931</left_val>
- <right_val>-0.0272523108869791</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 18 5 2 -1.</_>
- <_>5 18 5 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.8180808769538999e-004</threshold>
- <left_val>0.1027430966496468</left_val>
- <right_val>-0.2181538045406342</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 6 4 -1.</_>
- <_>5 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0507688894867897</threshold>
- <left_val>7.3335068300366402e-003</left_val>
- <right_val>-0.8505390286445618</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 6 4 -1.</_>
- <_>6 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0227386299520731</threshold>
- <left_val>-0.0439746491611004</left_val>
- <right_val>0.5016757249832153</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 6 8 -1.</_>
- <_>8 5 3 4 2.</_>
- <_>5 9 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3323072865605354e-004</threshold>
- <left_val>-0.0984317213296890</left_val>
- <right_val>0.1151536032557488</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 5 6 8 -1.</_>
- <_>3 5 3 4 2.</_>
- <_>6 9 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1889509623870254e-003</threshold>
- <left_val>-0.2244317978620529</left_val>
- <right_val>0.1081328988075256</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 8 12 -1.</_>
- <_>10 3 4 6 2.</_>
- <_>6 9 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2934029586613178e-003</threshold>
- <left_val>0.0718408674001694</left_val>
- <right_val>-0.0808680206537247</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 2 12 -1.</_>
- <_>2 10 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0113169923424721e-003</threshold>
- <left_val>-0.2969867885112763</left_val>
- <right_val>0.0797002688050270</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 13 3 -1.</_>
- <_>1 1 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5521480236202478e-003</threshold>
- <left_val>0.1869418025016785</left_val>
- <right_val>-0.1146747022867203</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 4 7 -1.</_>
- <_>4 1 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0103006800636649</threshold>
- <left_val>-0.2910937070846558</left_val>
- <right_val>0.0678363367915154</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 21 2 5 -1.</_>
- <_>9 21 1 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.6368349790573120e-003</threshold>
- <left_val>0.1128410995006561</left_val>
- <right_val>-0.0734685286879539</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 25 8 3 -1.</_>
- <_>6 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2815459417179227e-004</threshold>
- <left_val>0.0819218903779984</left_val>
- <right_val>-0.2489335983991623</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 3 12 -1.</_>
- <_>7 16 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0345145687460899</threshold>
- <left_val>0.4223099052906036</left_val>
- <right_val>-0.0346083901822567</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 15 8 6 -1.</_>
- <_>0 15 4 3 2.</_>
- <_>4 18 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1102999744471163e-004</threshold>
- <left_val>-0.1947975009679794</left_val>
- <right_val>0.1157203987240791</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 26 12 2 -1.</_>
- <_>2 26 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4254157692193985e-003</threshold>
- <left_val>-0.1931612044572830</left_val>
- <right_val>0.0581374317407608</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 26 12 2 -1.</_>
- <_>6 26 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7686230130493641e-003</threshold>
- <left_val>-0.1751880943775177</left_val>
- <right_val>0.1451503932476044</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 13 3 -1.</_>
- <_>1 2 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3355921041220427e-003</threshold>
- <left_val>0.2262147068977356</left_val>
- <right_val>-0.1019549965858460</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 14 2 -1.</_>
- <_>7 3 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0452411212027073</threshold>
- <left_val>0.0335726402699947</left_val>
- <right_val>-0.6653599739074707</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 12 4 -1.</_>
- <_>8 16 6 2 2.</_>
- <_>2 18 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0277080405503511</threshold>
- <left_val>-0.4751450121402741</left_val>
- <right_val>0.0166056193411350</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 20 12 6 -1.</_>
- <_>3 20 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0600426308810711</threshold>
- <left_val>0.2700265944004059</left_val>
- <right_val>-0.0752836018800735</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 15 8 7 -1.</_>
- <_>6 15 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.3657420948147774e-003</threshold>
- <left_val>-0.0520907603204250</left_val>
- <right_val>0.3435977101325989</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 6 12 -1.</_>
- <_>4 10 3 6 2.</_>
- <_>7 16 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0225451197475195</threshold>
- <left_val>0.0458237603306770</left_val>
- <right_val>-0.5311117768287659</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 4 6 -1.</_>
- <_>7 0 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0667560994625092</threshold>
- <left_val>0.5186759233474731</left_val>
- <right_val>-0.0107660898938775</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 6 4 -1.</_>
- <_>7 0 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.3578571639955044e-003</threshold>
- <left_val>-0.1668030023574829</left_val>
- <right_val>0.1341059058904648</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 18 8 6 -1.</_>
- <_>10 18 4 3 2.</_>
- <_>6 21 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0363381803035736</threshold>
- <left_val>-0.5482519268989563</left_val>
- <right_val>0.0182916000485420</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 8 4 -1.</_>
- <_>6 0 8 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0455095581710339</threshold>
- <left_val>0.3911918103694916</left_val>
- <right_val>-0.0543382689356804</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 15 10 6 -1.</_>
- <_>7 15 5 3 2.</_>
- <_>2 18 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2883161008358002e-003</threshold>
- <left_val>0.0954951867461205</left_val>
- <right_val>-0.2489372044801712</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 4 8 -1.</_>
- <_>0 17 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5809159958735108e-003</threshold>
- <left_val>-0.1679227054119110</left_val>
- <right_val>0.1155375987291336</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 14 9 -1.</_>
- <_>0 12 14 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1578021049499512</threshold>
- <left_val>-0.6959874033927918</left_val>
- <right_val>0.0310152992606163</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 24 9 4 -1.</_>
- <_>5 24 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0504007488489151</threshold>
- <left_val>-0.6101341843605042</left_val>
- <right_val>0.0256001893430948</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 24 12 4 -1.</_>
- <_>4 24 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.3708087913691998e-004</threshold>
- <left_val>0.0636897012591362</left_val>
- <right_val>-0.3257291018962860</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 11 10 8 -1.</_>
- <_>0 11 5 4 2.</_>
- <_>5 15 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0522598400712013</threshold>
- <left_val>-0.0526395291090012</left_val>
- <right_val>0.4301880002021790</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 6 4 -1.</_>
- <_>5 11 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6796218743547797e-004</threshold>
- <left_val>0.0807614400982857</left_val>
- <right_val>-0.2509211897850037</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 4 17 -1.</_>
- <_>2 8 2 17 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0363063998520374</threshold>
- <left_val>0.7283785939216614</left_val>
- <right_val>-0.0287035498768091</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 4 12 -1.</_>
- <_>10 2 2 6 2.</_>
- <_>8 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0758234113454819</threshold>
- <left_val>-0.7604526281356812</left_val>
- <right_val>0.0131663000211120</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 4 12 -1.</_>
- <_>2 2 2 6 2.</_>
- <_>4 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5567082017660141e-003</threshold>
- <left_val>0.1125840991735458</left_val>
- <right_val>-0.1985097974538803</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 7 4 14 -1.</_>
- <_>12 7 2 7 2.</_>
- <_>10 14 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1275521032512188e-003</threshold>
- <left_val>-0.1043618991971016</left_val>
- <right_val>0.1028300002217293</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 4 14 -1.</_>
- <_>0 7 2 7 2.</_>
- <_>2 14 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0279313195496798</threshold>
- <left_val>0.0470235608518124</left_val>
- <right_val>-0.4772753119468689</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 10 6 -1.</_>
- <_>4 8 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0151569703593850</threshold>
- <left_val>-0.0499093793332577</left_val>
- <right_val>0.2170501053333283</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 8 3 -1.</_>
- <_>6 6 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.8009081296622753e-003</threshold>
- <left_val>0.1171329021453857</left_val>
- <right_val>-0.2208292037248612</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 5 12 3 -1.</_>
- <_>2 6 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3796948157250881e-003</threshold>
- <left_val>0.1719119995832443</left_val>
- <right_val>-0.0896688103675842</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 15 9 5 -1.</_>
- <_>5 15 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.9269728846848011e-003</threshold>
- <left_val>0.0882584825158119</left_val>
- <right_val>-0.2645480930805206</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 14 15 -1.</_>
- <_>0 6 14 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2058625072240830</threshold>
- <left_val>-0.5026299953460693</left_val>
- <right_val>0.0408322513103485</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 6 18 -1.</_>
- <_>3 7 2 6 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1398729839129373e-004</threshold>
- <left_val>0.1053517013788223</left_val>
- <right_val>-0.1948872059583664</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 9 10 -1.</_>
- <_>4 7 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0369937792420387</threshold>
- <left_val>-0.0547796301543713</left_val>
- <right_val>0.2293298989534378</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 12 4 6 -1.</_>
- <_>7 12 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7788480296730995e-003</threshold>
- <left_val>0.0912943333387375</left_val>
- <right_val>-0.2496895045042038</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 3 21 -1.</_>
- <_>7 4 1 21 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1999059934169054e-003</threshold>
- <left_val>-0.0926852896809578</left_val>
- <right_val>0.1105071008205414</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 17 6 3 -1.</_>
- <_>5 18 6 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.0830740686506033e-003</threshold>
- <left_val>-0.1058308035135269</left_val>
- <right_val>0.1740527004003525</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 16 2 4 -1.</_>
- <_>7 16 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0271664895117283</threshold>
- <left_val>0.0115387802943587</left_val>
- <right_val>-1.0000569820404053</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 16 4 2 -1.</_>
- <_>7 16 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.3531907722353935e-003</threshold>
- <left_val>-0.2610597908496857</left_val>
- <right_val>0.0781094431877136</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 20 2 6 -1.</_>
- <_>8 20 1 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0166761707514524</threshold>
- <left_val>-0.6376665830612183</left_val>
- <right_val>0.0128073198720813</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 20 6 2 -1.</_>
- <_>6 20 6 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.7588710179552436e-003</threshold>
- <left_val>0.1532872021198273</left_val>
- <right_val>-0.1483021974563599</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 6 6 -1.</_>
- <_>8 4 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3470610138028860e-003</threshold>
- <left_val>0.1102273017168045</left_val>
- <right_val>-0.1116658002138138</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 3 16 -1.</_>
- <_>2 1 1 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7226730063557625e-003</threshold>
- <left_val>0.2674975991249085</left_val>
- <right_val>-0.0843757018446922</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 14 2 10 -1.</_>
- <_>12 14 1 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0245579890906811</threshold>
- <left_val>0.0117052299901843</left_val>
- <right_val>-0.6993631124496460</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 14 10 2 -1.</_>
- <_>2 14 10 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.1882451623678207e-003</threshold>
- <left_val>-0.2084566056728363</left_val>
- <right_val>0.1107387021183968</right_val></_></_></trees>
- <stage_threshold>-0.7278770804405212</stage_threshold>
- <parent>19</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 21 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 6 27 -1.</_>
- <_>5 10 2 9 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3092521131038666</threshold>
- <left_val>0.3152084052562714</left_val>
- <right_val>-0.1662925034761429</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 3 12 -1.</_>
- <_>7 16 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0386602506041527</threshold>
- <left_val>-0.0579346008598804</left_val>
- <right_val>0.4527879059314728</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 8 22 -1.</_>
- <_>4 6 4 22 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1885387003421783</threshold>
- <left_val>-0.8201392889022827</left_val>
- <right_val>0.0309413596987724</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 6 13 -1.</_>
- <_>6 6 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1423681220039725e-004</threshold>
- <left_val>0.1028093025088310</left_val>
- <right_val>-0.2490286976099014</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 11 6 6 -1.</_>
- <_>5 13 6 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0720744431018829</threshold>
- <left_val>0.3317157924175263</left_val>
- <right_val>-0.0736855119466782</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 26 12 2 -1.</_>
- <_>2 26 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4616664573550224e-003</threshold>
- <left_val>0.0326477885246277</left_val>
- <right_val>-0.3611251115798950</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 6 9 -1.</_>
- <_>6 8 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0465130805969238</threshold>
- <left_val>-0.4755085110664368</left_val>
- <right_val>0.0568774007260799</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 25 8 3 -1.</_>
- <_>6 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0347774587571621</threshold>
- <left_val>-0.6351556777954102</left_val>
- <right_val>0.0313141196966171</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 24 6 4 -1.</_>
- <_>6 24 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4840300427749753e-003</threshold>
- <left_val>0.0926282331347466</left_val>
- <right_val>-0.2528308033943176</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 16 8 9 -1.</_>
- <_>4 16 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3039281889796257e-003</threshold>
- <left_val>0.0339913889765739</left_val>
- <right_val>-0.1835747957229614</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 8 9 -1.</_>
- <_>6 16 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0273422095924616</threshold>
- <left_val>-0.0513939410448074</left_val>
- <right_val>0.5595899820327759</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 6 6 -1.</_>
- <_>7 5 3 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0586374215781689</threshold>
- <left_val>-0.0573506616055965</left_val>
- <right_val>0.1484225988388062</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 6 6 -1.</_>
- <_>7 15 3 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0370325110852718</threshold>
- <left_val>-0.4060286879539490</left_val>
- <right_val>0.0667901337146759</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 13 10 12 -1.</_>
- <_>3 19 10 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.9913606643676758e-003</threshold>
- <left_val>-0.1909431964159012</left_val>
- <right_val>0.0594380907714367</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 10 3 -1.</_>
- <_>7 6 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0593511983752251</threshold>
- <left_val>-0.8709725737571716</left_val>
- <right_val>0.0214834492653608</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 8 21 -1.</_>
- <_>3 8 8 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3705554008483887</threshold>
- <left_val>-0.0403960905969143</left_val>
- <right_val>0.6063132286071777</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 6 6 -1.</_>
- <_>4 9 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.4517069626599550e-004</threshold>
- <left_val>0.1366071999073029</left_val>
- <right_val>-0.1554179042577744</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 8 4 -1.</_>
- <_>4 12 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0106644798070192</threshold>
- <left_val>0.0341297611594200</left_val>
- <right_val>-0.2350808978080750</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 6 6 -1.</_>
- <_>7 5 6 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.7040449678897858e-003</threshold>
- <left_val>0.1129392012953758</left_val>
- <right_val>-0.1559647023677826</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 12 10 -1.</_>
- <_>2 8 6 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0233285501599312</threshold>
- <left_val>0.0367709808051586</left_val>
- <right_val>-0.1663112938404083</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 8 10 -1.</_>
- <_>5 4 4 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0209066402167082</threshold>
- <left_val>-0.0733919665217400</left_val>
- <right_val>0.3270866870880127</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 8 6 -1.</_>
- <_>7 16 4 3 2.</_>
- <_>3 19 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0865180995315313e-003</threshold>
- <left_val>0.0963757634162903</left_val>
- <right_val>-0.2163884043693543</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 2 24 -1.</_>
- <_>3 3 1 12 2.</_>
- <_>4 15 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2039430439472198e-003</threshold>
- <left_val>-0.1701869964599609</left_val>
- <right_val>0.1081503033638001</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 16 4 12 -1.</_>
- <_>10 16 2 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3848760649561882e-003</threshold>
- <left_val>-0.1082089021801949</left_val>
- <right_val>0.0907519534230232</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 4 12 -1.</_>
- <_>2 16 2 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0153092797845602</threshold>
- <left_val>-0.6207144260406494</left_val>
- <right_val>0.0313537307083607</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 3 12 -1.</_>
- <_>9 12 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0218207202851772</threshold>
- <left_val>-0.0572322495281696</left_val>
- <right_val>0.2914176881313324</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 5 6 -1.</_>
- <_>3 11 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8554150164127350e-003</threshold>
- <left_val>0.0558107085525990</left_val>
- <right_val>-0.3455778956413269</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 10 8 -1.</_>
- <_>2 11 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0883805900812149</threshold>
- <left_val>-0.5897160768508911</left_val>
- <right_val>0.0322578698396683</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 3 12 -1.</_>
- <_>4 12 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0363035984337330</threshold>
- <left_val>0.6790629029273987</left_val>
- <right_val>-0.0312984399497509</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 4 12 -1.</_>
- <_>5 16 2 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0677144229412079</threshold>
- <left_val>0.0281518306583166</left_val>
- <right_val>-0.7596389055252075</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 22 4 2 -1.</_>
- <_>7 22 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.7487880541011691e-003</threshold>
- <left_val>0.1352127045392990</left_val>
- <right_val>-0.1493988037109375</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 22 8 6 -1.</_>
- <_>10 22 4 3 2.</_>
- <_>6 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0576274208724499</threshold>
- <left_val>0.0147167900577188</left_val>
- <right_val>-0.6408889889717102</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 14 2 14 -1.</_>
- <_>2 14 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8004398122429848e-003</threshold>
- <left_val>0.0575108602643013</left_val>
- <right_val>-0.3072834014892578</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 20 3 5 -1.</_>
- <_>10 21 1 5 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0155685897916555</threshold>
- <left_val>-0.0268608294427395</left_val>
- <right_val>0.3939082920551300</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 20 5 3 -1.</_>
- <_>4 21 5 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.9650640040636063e-003</threshold>
- <left_val>0.3209015130996704</left_val>
- <right_val>-0.0589744411408901</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 2 5 -1.</_>
- <_>7 15 1 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.1902203857898712e-003</threshold>
- <left_val>-0.3800691068172455</left_val>
- <right_val>0.0358071699738503</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 10 6 -1.</_>
- <_>1 17 5 3 2.</_>
- <_>6 20 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0308349393308163</threshold>
- <left_val>0.0403541214764118</left_val>
- <right_val>-0.5078290104866028</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 12 3 -1.</_>
- <_>5 3 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.4900278812274337e-004</threshold>
- <left_val>0.0955971330404282</left_val>
- <right_val>-0.1881285011768341</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 5 6 -1.</_>
- <_>7 3 5 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.9334357716143131e-003</threshold>
- <left_val>-0.2027994990348816</left_val>
- <right_val>0.1051485016942024</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 3 12 -1.</_>
- <_>8 7 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0214776806533337</threshold>
- <left_val>-0.3298557102680206</left_val>
- <right_val>0.0352633781731129</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 3 12 -1.</_>
- <_>5 7 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0275162495672703</threshold>
- <left_val>0.3455865085124970</left_val>
- <right_val>-0.0725449100136757</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 9 13 -1.</_>
- <_>8 11 3 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2914459742605686e-003</threshold>
- <left_val>0.1005168035626411</left_val>
- <right_val>-0.1356077045202255</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 3 21 -1.</_>
- <_>6 5 1 21 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0561357289552689</threshold>
- <left_val>0.4007847011089325</left_val>
- <right_val>-0.0519918389618397</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 9 11 -1.</_>
- <_>7 13 3 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1367962062358856</threshold>
- <left_val>-0.0164327807724476</left_val>
- <right_val>0.5610008835792542</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 13 9 11 -1.</_>
- <_>4 13 3 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0245499201118946</threshold>
- <left_val>-0.1818747967481613</left_val>
- <right_val>0.1412536948919296</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 18 8 10 -1.</_>
- <_>9 18 4 5 2.</_>
- <_>5 23 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6405121684074402e-003</threshold>
- <left_val>-0.1650065928697586</left_val>
- <right_val>0.1491245031356812</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 14 14 -1.</_>
- <_>0 5 7 7 2.</_>
- <_>7 12 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0210233591496944</threshold>
- <left_val>-0.1961192935705185</left_val>
- <right_val>0.0992269366979599</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 3 15 -1.</_>
- <_>10 0 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8856949433684349e-003</threshold>
- <left_val>0.1133050993084908</left_val>
- <right_val>-0.0801724866032600</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 6 20 -1.</_>
- <_>5 0 2 20 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1733780950307846</threshold>
- <left_val>-0.8345893025398254</left_val>
- <right_val>0.0236916691064835</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 12 2 -1.</_>
- <_>2 5 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.2903972836211324e-004</threshold>
- <left_val>0.0859042033553123</left_val>
- <right_val>-0.1058012023568153</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 12 3 -1.</_>
- <_>0 4 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0105620902031660</threshold>
- <left_val>0.2698987126350403</left_val>
- <right_val>-0.0675421431660652</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 14 6 -1.</_>
- <_>7 18 7 3 2.</_>
- <_>0 21 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0150712598115206</threshold>
- <left_val>0.0586574897170067</left_val>
- <right_val>-0.3243629038333893</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 3 15 -1.</_>
- <_>3 0 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0186164304614067</threshold>
- <left_val>0.3566071987152100</left_val>
- <right_val>-0.0530993789434433</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 6 4 -1.</_>
- <_>8 1 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0844124630093575</threshold>
- <left_val>0.0177159290760756</left_val>
- <right_val>-0.4580355882644653</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 6 6 -1.</_>
- <_>2 9 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0511387698352337</threshold>
- <left_val>0.0174076799303293</left_val>
- <right_val>-0.9411020278930664</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 22 4 6 -1.</_>
- <_>10 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0106134600937366</threshold>
- <left_val>-0.6063237190246582</left_val>
- <right_val>0.0307936705648899</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 7 3 12 -1.</_>
- <_>3 7 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0183576196432114</threshold>
- <left_val>-0.0772681906819344</left_val>
- <right_val>0.2978057861328125</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 25 8 3 -1.</_>
- <_>6 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.4444461390376091e-004</threshold>
- <left_val>0.0780230090022087</left_val>
- <right_val>-0.2501764893531799</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 22 4 6 -1.</_>
- <_>2 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2388968653976917e-003</threshold>
- <left_val>-0.4801769852638245</left_val>
- <right_val>0.0391856394708157</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 24 6 4 -1.</_>
- <_>8 24 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0353631712496281</threshold>
- <left_val>-1.</left_val>
- <right_val>9.3268742784857750e-003</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 4 9 -1.</_>
- <_>4 3 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0735581219196320</threshold>
- <left_val>-0.7789533734321594</left_val>
- <right_val>0.0184415001422167</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 6 4 -1.</_>
- <_>8 3 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0870342031121254</threshold>
- <left_val>0.4362406134605408</left_val>
- <right_val>-0.0177165996283293</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 6 22 -1.</_>
- <_>2 0 3 11 2.</_>
- <_>5 11 3 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0807216465473175</threshold>
- <left_val>0.2729671895503998</left_val>
- <right_val>-0.0663469582796097</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 18 8 10 -1.</_>
- <_>10 18 4 5 2.</_>
- <_>6 23 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1034459024667740</threshold>
- <left_val>9.0693607926368713e-003</left_val>
- <right_val>-0.6643865108489990</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 22 6 6 -1.</_>
- <_>2 22 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.3807540833950043e-003</threshold>
- <left_val>0.0712427720427513</left_val>
- <right_val>-0.2738165855407715</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 13 6 6 -1.</_>
- <_>8 15 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0718061476945877</threshold>
- <left_val>-0.9122204184532166</left_val>
- <right_val>8.0809993669390678e-003</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 6 6 -1.</_>
- <_>0 15 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9418599549680948e-003</threshold>
- <left_val>0.1847234070301056</left_val>
- <right_val>-0.1134454980492592</right_val></_></_></trees>
- <stage_threshold>-0.7794421911239624</stage_threshold>
- <parent>20</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 22 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 6 6 -1.</_>
- <_>3 16 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0303289592266083</threshold>
- <left_val>-0.1753951013088226</left_val>
- <right_val>0.3694534003734589</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 3 21 -1.</_>
- <_>7 9 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0826317816972733</threshold>
- <left_val>0.2221647948026657</left_val>
- <right_val>-0.0875775516033173</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 6 3 -1.</_>
- <_>3 15 6 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.5548380799591541e-003</threshold>
- <left_val>-0.1509108990430832</left_val>
- <right_val>0.1460877060890198</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 25 8 3 -1.</_>
- <_>6 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4431839808821678e-003</threshold>
- <left_val>0.0624052509665489</left_val>
- <right_val>-0.1830209940671921</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 4 6 -1.</_>
- <_>7 3 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0430062897503376</threshold>
- <left_val>0.0857114866375923</left_val>
- <right_val>-0.4427877962589264</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 8 16 -1.</_>
- <_>4 9 4 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1774813979864121</threshold>
- <left_val>-0.6730855107307434</left_val>
- <right_val>0.0216223802417517</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 8 16 -1.</_>
- <_>6 9 4 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0997236967086792</threshold>
- <left_val>-0.0427756607532501</left_val>
- <right_val>0.6908894181251526</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 7 24 -1.</_>
- <_>4 9 7 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0179571993649006</threshold>
- <left_val>0.0887849330902100</left_val>
- <right_val>-0.2935299873352051</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 4 6 -1.</_>
- <_>3 17 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8914110995829105e-003</threshold>
- <left_val>0.0268841795623302</left_val>
- <right_val>-0.3925782144069672</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 6 4 -1.</_>
- <_>5 4 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2439199490472674e-003</threshold>
- <left_val>0.0836953297257423</left_val>
- <right_val>-0.1352465003728867</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 4 6 -1.</_>
- <_>7 2 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0631099566817284</threshold>
- <left_val>0.6836500167846680</left_val>
- <right_val>-0.0111745800822973</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 6 4 -1.</_>
- <_>4 9 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3107268176972866e-003</threshold>
- <left_val>0.0730957910418510</left_val>
- <right_val>-0.3322851955890656</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 24 6 4 -1.</_>
- <_>4 24 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6346868667751551e-004</threshold>
- <left_val>0.0939234569668770</left_val>
- <right_val>-0.2601422071456909</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 6 8 -1.</_>
- <_>8 0 3 4 2.</_>
- <_>5 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0203776806592941</threshold>
- <left_val>0.2368240952491760</left_val>
- <right_val>-0.0518113411962986</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 26 12 2 -1.</_>
- <_>6 26 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0156107498332858</threshold>
- <left_val>-0.4846526980400085</left_val>
- <right_val>0.0421287305653095</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 6 8 -1.</_>
- <_>8 0 3 4 2.</_>
- <_>5 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0454972907900810</threshold>
- <left_val>5.7874252088367939e-003</left_val>
- <right_val>-0.5263736844062805</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 4 6 -1.</_>
- <_>7 4 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0122448699548841</threshold>
- <left_val>0.3052304089069367</left_val>
- <right_val>-0.0793112665414810</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 6 8 -1.</_>
- <_>6 2 6 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.5875871330499649e-003</threshold>
- <left_val>0.0725049003958702</left_val>
- <right_val>-0.1030094027519226</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 8 6 -1.</_>
- <_>8 2 4 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0132377101108432</threshold>
- <left_val>-0.2125997990369797</left_val>
- <right_val>0.1411207020282745</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 17 3 4 -1.</_>
- <_>8 18 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0162360705435276</threshold>
- <left_val>-0.3682213127613068</left_val>
- <right_val>0.0169044993817806</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 20 6 8 -1.</_>
- <_>1 20 3 4 2.</_>
- <_>4 24 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7341741891577840e-004</threshold>
- <left_val>-0.1751320958137512</left_val>
- <right_val>0.1171779036521912</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 15 2 12 -1.</_>
- <_>9 15 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8164516016840935e-003</threshold>
- <left_val>-0.0409356690943241</left_val>
- <right_val>0.3813630938529968</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 2 12 -1.</_>
- <_>4 15 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4803799786022864e-005</threshold>
- <left_val>-0.1158130019903183</left_val>
- <right_val>0.1805412024259567</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 2 6 4 -1.</_>
- <_>5 2 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0362725406885147</threshold>
- <left_val>0.0151967499405146</left_val>
- <right_val>-0.4603796005249023</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 6 4 -1.</_>
- <_>6 3 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8026720285415649e-003</threshold>
- <left_val>0.1344036012887955</left_val>
- <right_val>-0.1612498015165329</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 6 24 -1.</_>
- <_>7 4 3 12 2.</_>
- <_>4 16 3 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0145857501775026</threshold>
- <left_val>-0.2833149135112763</left_val>
- <right_val>0.0746821165084839</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 13 2 12 -1.</_>
- <_>7 13 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4677370199933648e-003</threshold>
- <left_val>-0.1349322050809860</left_val>
- <right_val>0.1424490958452225</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 16 3 12 -1.</_>
- <_>7 16 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0139815695583820</threshold>
- <left_val>0.2173554003238678</left_val>
- <right_val>-0.0528866797685623</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 2 14 -1.</_>
- <_>7 4 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3076039077714086e-004</threshold>
- <left_val>0.1490194946527481</left_val>
- <right_val>-0.1362009942531586</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 4 25 -1.</_>
- <_>6 3 2 25 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0144755402579904</threshold>
- <left_val>-0.1918009966611862</left_val>
- <right_val>0.1060713008046150</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 3 21 -1.</_>
- <_>6 4 1 21 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0322175808250904</threshold>
- <left_val>0.2809166908264160</left_val>
- <right_val>-0.0850462913513184</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 2 12 -1.</_>
- <_>7 6 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4460560418665409e-003</threshold>
- <left_val>0.0745718702673912</left_val>
- <right_val>-0.2710860967636108</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 4 20 -1.</_>
- <_>5 4 2 10 2.</_>
- <_>7 14 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0439498908817768</threshold>
- <left_val>0.4400210082530975</left_val>
- <right_val>-0.0455091297626495</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 6 24 -1.</_>
- <_>8 12 2 8 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0119662703946233</threshold>
- <left_val>0.0632868707180023</left_val>
- <right_val>-0.1980538070201874</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 12 24 -1.</_>
- <_>6 1 6 24 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.4348602890968323</threshold>
- <left_val>-0.7620549798011780</left_val>
- <right_val>0.0215081293135881</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 7 22 -1.</_>
- <_>7 17 7 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3988755047321320</threshold>
- <left_val>8.0703729763627052e-003</left_val>
- <right_val>-0.8428487777709961</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 3 4 9 -1.</_>
- <_>4 6 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0448023788630962</threshold>
- <left_val>-0.6841738224029541</left_val>
- <right_val>0.0224749799817801</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 6 8 -1.</_>
- <_>6 6 6 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1093515008687973</threshold>
- <left_val>0.2111950963735580</left_val>
- <right_val>-0.0397316403687000</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 6 4 -1.</_>
- <_>7 5 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0309234093874693</threshold>
- <left_val>0.0447794012725353</left_val>
- <right_val>-0.3587503135204315</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 4 6 -1.</_>
- <_>5 4 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0132859796285629</threshold>
- <left_val>-0.0481516607105732</left_val>
- <right_val>0.3711921870708466</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 7 10 -1.</_>
- <_>0 5 7 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9830091409385204e-003</threshold>
- <left_val>0.1278153061866760</left_val>
- <right_val>-0.1995912045240402</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 3 24 -1.</_>
- <_>7 8 3 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0141846202313900</threshold>
- <left_val>-0.0398960486054420</left_val>
- <right_val>0.2408592998981476</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 4 15 -1.</_>
- <_>2 8 2 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6680279513821006e-003</threshold>
- <left_val>-0.1810705959796906</left_val>
- <right_val>0.0939819067716599</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 25 8 3 -1.</_>
- <_>6 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0220558904111385</threshold>
- <left_val>-0.2879816889762878</left_val>
- <right_val>0.0300383698195219</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 23 12 3 -1.</_>
- <_>5 23 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0603718012571335</threshold>
- <left_val>0.2952964007854462</left_val>
- <right_val>-0.0647140964865685</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 22 8 6 -1.</_>
- <_>10 22 4 3 2.</_>
- <_>6 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0592914484441280</threshold>
- <left_val>8.4209917113184929e-003</left_val>
- <right_val>-0.5883092284202576</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 22 14 6 -1.</_>
- <_>0 22 7 3 2.</_>
- <_>7 25 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0326371490955353</threshold>
- <left_val>0.0321183390915394</left_val>
- <right_val>-0.5119292140007019</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 12 3 -1.</_>
- <_>2 4 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.8897633142769337e-004</threshold>
- <left_val>0.1338261961936951</left_val>
- <right_val>-0.1154571026563644</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 12 9 -1.</_>
- <_>4 5 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0355604402720928</threshold>
- <left_val>-0.1515962928533554</left_val>
- <right_val>0.1051914021372795</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 12 12 -1.</_>
- <_>5 4 4 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.8722549155354500e-003</threshold>
- <left_val>0.0934620425105095</left_val>
- <right_val>-0.2598895132541657</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 12 3 -1.</_>
- <_>1 4 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1953269653022289e-003</threshold>
- <left_val>-0.0869378298521042</left_val>
- <right_val>0.2837277054786682</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 12 3 -1.</_>
- <_>5 4 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0244370996952057</threshold>
- <left_val>-0.0399301089346409</left_val>
- <right_val>0.3924323916435242</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 2 12 -1.</_>
- <_>2 15 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2195340394973755e-003</threshold>
- <left_val>0.0498041100800037</left_val>
- <right_val>-0.3184682130813599</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 20 12 5 -1.</_>
- <_>5 20 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3442960809916258e-003</threshold>
- <left_val>-0.0544699504971504</left_val>
- <right_val>0.3371812105178833</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 5 4 -1.</_>
- <_>6 16 5 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.7694300301373005e-003</threshold>
- <left_val>0.0714767873287201</left_val>
- <right_val>-0.3101828098297119</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 3 21 -1.</_>
- <_>7 9 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0145174702629447</threshold>
- <left_val>0.0786424800753593</left_val>
- <right_val>-0.1453883945941925</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 4 12 -1.</_>
- <_>2 2 2 6 2.</_>
- <_>4 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0447107292711735</threshold>
- <left_val>-0.0250517800450325</left_val>
- <right_val>0.6473051905632019</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 22 8 6 -1.</_>
- <_>7 22 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0168673992156982</threshold>
- <left_val>0.0290889590978622</left_val>
- <right_val>-0.3903023898601532</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 10 6 -1.</_>
- <_>0 1 5 3 2.</_>
- <_>5 4 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0343318879604340e-004</threshold>
- <left_val>0.0877225771546364</left_val>
- <right_val>-0.1658854931592941</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 11 9 6 -1.</_>
- <_>3 13 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0821873396635056</threshold>
- <left_val>-0.8423885703086853</left_val>
- <right_val>9.8376423120498657e-003</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 2 19 -1.</_>
- <_>7 7 1 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8525390187278390e-003</threshold>
- <left_val>-0.1225149035453796</left_val>
- <right_val>0.1200018972158432</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 8 16 -1.</_>
- <_>7 10 4 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.3228723853826523e-003</threshold>
- <left_val>0.0784228518605232</left_val>
- <right_val>-0.1323194950819016</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 3 12 -1.</_>
- <_>6 16 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0227306894958019</threshold>
- <left_val>-0.0336967892944813</left_val>
- <right_val>0.4438394010066986</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 13 4 15 -1.</_>
- <_>10 18 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1028665974736214</threshold>
- <left_val>0.0179174300283194</left_val>
- <right_val>-0.5834161043167114</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 10 10 -1.</_>
- <_>2 1 5 5 2.</_>
- <_>7 6 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0995473712682724</threshold>
- <left_val>-0.9536556005477905</left_val>
- <right_val>0.0125820403918624</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 19 2 7 -1.</_>
- <_>7 19 1 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0164127591997385</threshold>
- <left_val>0.0160671193152666</left_val>
- <right_val>-0.4140237867832184</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 14 9 6 -1.</_>
- <_>5 14 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5932409334927797e-003</threshold>
- <left_val>0.0527634993195534</left_val>
- <right_val>-0.3040460050106049</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 10 14 -1.</_>
- <_>9 13 5 7 2.</_>
- <_>4 20 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.5953093841671944e-003</threshold>
- <left_val>0.0835280865430832</left_val>
- <right_val>-0.1178006976842880</right_val></_></_></trees>
- <stage_threshold>-0.7301942706108093</stage_threshold>
- <parent>21</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 23 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 12 15 -1.</_>
- <_>5 12 4 5 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3543010950088501</threshold>
- <left_val>0.3179292082786560</left_val>
- <right_val>-0.1851280033588409</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 2 24 -1.</_>
- <_>7 2 1 12 2.</_>
- <_>6 14 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0147613296285272</threshold>
- <left_val>0.3406507968902588</left_val>
- <right_val>-0.0866217389702797</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 4 12 -1.</_>
- <_>5 9 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1158045008778572</threshold>
- <left_val>-0.7235320210456848</left_val>
- <right_val>0.0344048403203487</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 24 6 4 -1.</_>
- <_>8 24 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4705160689773038e-005</threshold>
- <left_val>0.0824970826506615</left_val>
- <right_val>-0.2131111025810242</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 24 6 4 -1.</_>
- <_>3 24 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8883379097096622e-005</threshold>
- <left_val>0.1080930009484291</left_val>
- <right_val>-0.1826986074447632</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 12 4 -1.</_>
- <_>4 8 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0379448495805264</threshold>
- <left_val>-0.0247565507888794</left_val>
- <right_val>0.4586691856384277</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 4 9 -1.</_>
- <_>5 8 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1807940211147070e-003</threshold>
- <left_val>0.1578385978937149</left_val>
- <right_val>-0.1775245964527130</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 18 4 6 -1.</_>
- <_>9 18 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0454301014542580</threshold>
- <left_val>-0.3724954128265381</left_val>
- <right_val>5.7393261231482029e-003</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 20 8 8 -1.</_>
- <_>2 20 4 4 2.</_>
- <_>6 24 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9972559530287981e-003</threshold>
- <left_val>-0.1917531043291092</left_val>
- <right_val>0.1199517026543617</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 15 2 8 -1.</_>
- <_>11 15 1 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.2458820239990018e-005</threshold>
- <left_val>0.0915291681885719</left_val>
- <right_val>-0.1308099031448364</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 8 2 -1.</_>
- <_>3 15 8 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.7994279991835356e-003</threshold>
- <left_val>-0.2045497000217438</left_val>
- <right_val>0.1414657980203629</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 4 6 -1.</_>
- <_>5 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7970419614575803e-004</threshold>
- <left_val>0.1107816025614739</left_val>
- <right_val>-0.1871396005153656</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 22 4 6 -1.</_>
- <_>2 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9631421677768230e-003</threshold>
- <left_val>-0.3774999082088471</left_val>
- <right_val>0.0569357909262180</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 26 14 2 -1.</_>
- <_>0 26 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4290240360423923e-003</threshold>
- <left_val>-0.1944985985755920</left_val>
- <right_val>0.0988349169492722</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 20 6 8 -1.</_>
- <_>3 20 3 4 2.</_>
- <_>6 24 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0211821794509888</threshold>
- <left_val>-0.0870304107666016</left_val>
- <right_val>0.2888861000537872</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 16 2 12 -1.</_>
- <_>7 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7332521798089147e-004</threshold>
- <left_val>-0.1172915995121002</left_val>
- <right_val>0.1250654011964798</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 4 12 -1.</_>
- <_>5 13 2 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0261357594281435</threshold>
- <left_val>-0.0395724289119244</left_val>
- <right_val>0.6225264072418213</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 22 12 2 -1.</_>
- <_>1 22 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3046330101788044e-003</threshold>
- <left_val>0.1158230975270271</left_val>
- <right_val>-0.1961823999881744</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 24 12 4 -1.</_>
- <_>0 24 6 2 2.</_>
- <_>6 26 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5224959934130311e-003</threshold>
- <left_val>-0.1858606040477753</left_val>
- <right_val>0.1168838962912560</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 6 4 -1.</_>
- <_>5 10 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4201932875439525e-004</threshold>
- <left_val>0.0987247377634048</left_val>
- <right_val>-0.2579134106636047</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 12 3 -1.</_>
- <_>0 4 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5593061000108719e-003</threshold>
- <left_val>0.1730794012546539</left_val>
- <right_val>-0.1206706985831261</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 6 6 -1.</_>
- <_>7 4 3 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0955632179975510</threshold>
- <left_val>0.3464641869068146</left_val>
- <right_val>-0.0131421396508813</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 6 6 -1.</_>
- <_>7 4 6 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0132807902991772</threshold>
- <left_val>0.1205687969923019</left_val>
- <right_val>-0.2062774002552033</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 6 8 -1.</_>
- <_>8 3 3 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0182455293834209</threshold>
- <left_val>-0.0672429502010345</left_val>
- <right_val>0.0468581281602383</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 6 5 -1.</_>
- <_>3 6 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0612889714539051</threshold>
- <left_val>-0.6636496782302856</left_val>
- <right_val>0.0293191503733397</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 3 12 -1.</_>
- <_>9 3 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0261334199458361</threshold>
- <left_val>0.2084838002920151</left_val>
- <right_val>-0.0272029303014278</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 2 22 -1.</_>
- <_>7 0 1 22 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0323008187115192</threshold>
- <left_val>-0.6272640824317932</left_val>
- <right_val>0.0300918798893690</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 3 12 -1.</_>
- <_>9 3 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0502844899892807</threshold>
- <left_val>1.5047290362417698e-003</left_val>
- <right_val>-0.5963041186332703</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 3 12 -1.</_>
- <_>4 3 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0181371197104454</threshold>
- <left_val>0.2926290929317474</left_val>
- <right_val>-0.0692134499549866</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 3 12 -1.</_>
- <_>7 6 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0980300139635801e-003</threshold>
- <left_val>0.1031685993075371</left_val>
- <right_val>-0.1655807048082352</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 15 2 12 -1.</_>
- <_>6 15 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9596110582351685e-003</threshold>
- <left_val>-0.0570635795593262</left_val>
- <right_val>0.3374491035938263</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 6 10 -1.</_>
- <_>8 8 3 5 2.</_>
- <_>5 13 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1622028909623623e-003</threshold>
- <left_val>0.0883023589849472</left_val>
- <right_val>-0.2791759073734283</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 10 10 -1.</_>
- <_>2 8 5 5 2.</_>
- <_>7 13 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4337368607521057e-003</threshold>
- <left_val>0.0863110572099686</left_val>
- <right_val>-0.2515366077423096</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 6 10 -1.</_>
- <_>10 9 3 5 2.</_>
- <_>7 14 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0234084799885750</threshold>
- <left_val>-0.0370115190744400</left_val>
- <right_val>0.2557156085968018</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 12 3 -1.</_>
- <_>0 5 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9710899796336889e-003</threshold>
- <left_val>0.1496087014675140</left_val>
- <right_val>-0.1321375966072083</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 16 2 12 -1.</_>
- <_>9 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0314347818493843</threshold>
- <left_val>0.2707290947437286</left_val>
- <right_val>-0.0247841402888298</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 2 12 -1.</_>
- <_>4 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0984669681638479e-003</threshold>
- <left_val>-0.2284294068813324</left_val>
- <right_val>0.0923924893140793</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 20 12 6 -1.</_>
- <_>6 20 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1047758013010025</threshold>
- <left_val>0.1374094933271408</left_val>
- <right_val>-0.0586049407720566</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 8 8 -1.</_>
- <_>2 10 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0125585002824664</threshold>
- <left_val>0.0944282636046410</left_val>
- <right_val>-0.2318764030933380</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 14 6 -1.</_>
- <_>0 15 14 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6465631090104580e-003</threshold>
- <left_val>-0.2049358934164047</left_val>
- <right_val>0.0928895771503448</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 12 16 -1.</_>
- <_>1 14 12 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2806937992572784</threshold>
- <left_val>0.0408484004437923</left_val>
- <right_val>-0.4617752134799957</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 7 3 12 -1.</_>
- <_>8 7 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0458823181688786</threshold>
- <left_val>-0.7171555161476135</left_val>
- <right_val>9.1696027666330338e-003</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 14 3 -1.</_>
- <_>0 1 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3070689747110009e-003</threshold>
- <left_val>0.1625052988529205</left_val>
- <right_val>-0.1143703013658524</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 13 3 -1.</_>
- <_>1 1 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8374760448932648e-003</threshold>
- <left_val>-0.0675647929310799</left_val>
- <right_val>0.2192721962928772</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 6 7 -1.</_>
- <_>2 17 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8329561725258827e-003</threshold>
- <left_val>-0.3584390878677368</left_val>
- <right_val>0.0574676282703877</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 24 6 4 -1.</_>
- <_>6 24 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0409369990229607</threshold>
- <left_val>-0.5512949824333191</left_val>
- <right_val>0.0138196200132370</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 6 7 -1.</_>
- <_>3 9 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0187274403870106</threshold>
- <left_val>-0.0528446398675442</left_val>
- <right_val>0.3442713022232056</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 6 18 -1.</_>
- <_>10 9 3 9 2.</_>
- <_>7 18 3 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0303989984095097e-003</threshold>
- <left_val>-0.0948721468448639</left_val>
- <right_val>0.1123586967587471</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 22 12 5 -1.</_>
- <_>4 22 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6228028582409024e-004</threshold>
- <left_val>0.0638755112886429</left_val>
- <right_val>-0.3039735853672028</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 9 6 10 -1.</_>
- <_>10 9 3 5 2.</_>
- <_>7 14 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0268611107021570</threshold>
- <left_val>0.1759292036294937</left_val>
- <right_val>-0.0625069886445999</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 6 10 -1.</_>
- <_>1 9 3 5 2.</_>
- <_>4 14 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0310612805187702</threshold>
- <left_val>-0.0721711292862892</left_val>
- <right_val>0.3153252005577087</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 22 4 6 -1.</_>
- <_>8 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.1269841864705086e-003</threshold>
- <left_val>-0.1254031062126160</left_val>
- <right_val>0.1006817966699600</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 6 8 -1.</_>
- <_>0 16 3 4 2.</_>
- <_>3 20 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0277093406766653</threshold>
- <left_val>-0.8008555173873901</left_val>
- <right_val>0.0257421806454659</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 6 8 -1.</_>
- <_>4 2 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0422094501554966</threshold>
- <left_val>0.0278460700064898</left_val>
- <right_val>-0.5614020228385925</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 4 9 -1.</_>
- <_>5 6 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2995860353112221e-003</threshold>
- <left_val>0.1080691963434219</left_val>
- <right_val>-0.2011452019214630</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 8 4 19 -1.</_>
- <_>10 8 2 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0200487896800041</threshold>
- <left_val>-0.0581646189093590</left_val>
- <right_val>0.1888546943664551</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 4 6 -1.</_>
- <_>5 11 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.8481709351763129e-005</threshold>
- <left_val>0.0829957127571106</left_val>
- <right_val>-0.2133198976516724</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 7 6 -1.</_>
- <_>7 4 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0899455472826958</threshold>
- <left_val>-0.7930771708488464</left_val>
- <right_val>7.8350491821765900e-003</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 2 12 -1.</_>
- <_>1 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7181761153042316e-003</threshold>
- <left_val>0.0414350405335426</left_val>
- <right_val>-0.3772186040878296</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 0 3 17 -1.</_>
- <_>12 0 1 17 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3638177923858166e-003</threshold>
- <left_val>-0.0935679376125336</left_val>
- <right_val>0.1466635018587112</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 3 17 -1.</_>
- <_>1 0 1 17 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0145553303882480</threshold>
- <left_val>-0.0569892115890980</left_val>
- <right_val>0.3436796963214874</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 13 4 14 -1.</_>
- <_>5 20 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1058373004198074</threshold>
- <left_val>0.0305793005973101</left_val>
- <right_val>-0.5868499875068665</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 15 8 4 -1.</_>
- <_>6 15 4 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.7123570907860994e-004</threshold>
- <left_val>0.0854805186390877</left_val>
- <right_val>-0.2280874997377396</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 17 8 6 -1.</_>
- <_>7 17 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0731964334845543</threshold>
- <left_val>-0.5121256113052368</left_val>
- <right_val>9.6583841368556023e-003</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 8 6 -1.</_>
- <_>3 17 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3729642210528255e-004</threshold>
- <left_val>-0.1797831952571869</left_val>
- <right_val>0.1411747038364410</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 11 4 6 -1.</_>
- <_>5 11 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9459549803286791e-003</threshold>
- <left_val>0.0876059383153915</left_val>
- <right_val>-0.2044205069541931</right_val></_></_></trees>
- <stage_threshold>-0.6855844259262085</stage_threshold>
- <parent>22</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 24 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 13 8 13 -1.</_>
- <_>5 13 4 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0855053663253784</threshold>
- <left_val>0.2671464979648590</left_val>
- <right_val>-0.1815284937620163</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 8 4 -1.</_>
- <_>3 8 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0370142795145512</threshold>
- <left_val>0.3740546107292175</left_val>
- <right_val>-0.0703127011656761</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 6 4 -1.</_>
- <_>7 5 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0168347805738449</threshold>
- <left_val>0.0891601070761681</left_val>
- <right_val>-0.2456610053777695</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 6 8 -1.</_>
- <_>7 9 3 4 2.</_>
- <_>4 13 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.7268886747770011e-005</threshold>
- <left_val>-0.1983094066381455</left_val>
- <right_val>0.1498146951198578</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 2 24 -1.</_>
- <_>6 4 1 12 2.</_>
- <_>7 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2984068170189857e-003</threshold>
- <left_val>-0.1577990949153900</left_val>
- <right_val>0.1709541976451874</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 24 6 4 -1.</_>
- <_>7 24 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0237708594650030</threshold>
- <left_val>-0.2509627938270569</left_val>
- <right_val>0.0327907316386700</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 20 5 3 -1.</_>
- <_>6 21 5 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0148529596626759</threshold>
- <left_val>0.2726315855979919</left_val>
- <right_val>-0.0721883028745651</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 9 12 -1.</_>
- <_>6 19 3 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0827229693531990</threshold>
- <left_val>-0.0668017715215683</left_val>
- <right_val>0.1338412016630173</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 20 8 7 -1.</_>
- <_>3 20 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4472708618268371e-004</threshold>
- <left_val>-0.1930968016386032</left_val>
- <right_val>0.1362846940755844</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 12 2 14 -1.</_>
- <_>10 12 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3215509504079819e-004</threshold>
- <left_val>0.0574269108474255</left_val>
- <right_val>-0.0729834362864494</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 2 14 -1.</_>
- <_>3 12 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5133621066925116e-006</threshold>
- <left_val>0.1217446997761726</left_val>
- <right_val>-0.1816664040088654</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 8 4 -1.</_>
- <_>3 8 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0204936098307371</threshold>
- <left_val>-0.0616576001048088</left_val>
- <right_val>0.3857055008411408</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 8 8 -1.</_>
- <_>3 9 4 4 2.</_>
- <_>7 13 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9959441423416138e-003</threshold>
- <left_val>-0.1809124946594238</left_val>
- <right_val>0.1179118007421494</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 12 24 -1.</_>
- <_>5 10 4 8 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.9391052126884460</threshold>
- <left_val>0.3137440979480743</left_val>
- <right_val>-0.0592162981629372</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 10 3 -1.</_>
- <_>7 8 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0243414901196957</threshold>
- <left_val>-0.3705335855484009</left_val>
- <right_val>0.0552511103451252</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 15 8 8 -1.</_>
- <_>6 15 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0767967775464058</threshold>
- <left_val>0.1375488936901093</left_val>
- <right_val>-0.0582019388675690</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 4 4 -1.</_>
- <_>6 16 4 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.2179326564073563e-003</threshold>
- <left_val>-0.2567924857139587</left_val>
- <right_val>0.0991956964135170</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 6 6 -1.</_>
- <_>6 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0517026185989380</threshold>
- <left_val>-0.5293763875961304</left_val>
- <right_val>0.0272751804441214</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 16 3 12 -1.</_>
- <_>5 16 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3065597787499428e-003</threshold>
- <left_val>-0.1040067970752716</left_val>
- <right_val>0.2038889974355698</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 8 3 12 -1.</_>
- <_>8 8 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0363370403647423</threshold>
- <left_val>0.0131788402795792</left_val>
- <right_val>-0.3871706128120422</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 3 12 -1.</_>
- <_>5 8 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7929339557886124e-003</threshold>
- <left_val>0.1235100030899048</left_val>
- <right_val>-0.2046077996492386</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 17 4 6 -1.</_>
- <_>10 17 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0144353797659278</threshold>
- <left_val>-0.5011137723922730</left_val>
- <right_val>0.0372625403106213</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 2 24 -1.</_>
- <_>5 4 1 12 2.</_>
- <_>6 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4411992207169533e-003</threshold>
- <left_val>-0.0605571903288364</left_val>
- <right_val>0.3057847023010254</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 25 8 3 -1.</_>
- <_>6 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2598140165209770e-003</threshold>
- <left_val>0.0532007515430450</left_val>
- <right_val>-0.1691620051860809</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 4 6 -1.</_>
- <_>2 17 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.9105648435652256e-003</threshold>
- <left_val>-0.3639864921569824</left_val>
- <right_val>0.0428431518375874</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 11 6 12 -1.</_>
- <_>11 11 3 6 2.</_>
- <_>8 17 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0526631101965904</threshold>
- <left_val>0.4416917860507965</left_val>
- <right_val>-0.0320968292653561</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 3 10 -1.</_>
- <_>3 12 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0409250594675541</threshold>
- <left_val>-0.5567336082458496</left_val>
- <right_val>0.0291916895657778</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 4 6 -1.</_>
- <_>7 6 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.1683140657842159e-003</threshold>
- <left_val>0.0665858536958694</left_val>
- <right_val>-0.1171517968177795</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 10 3 -1.</_>
- <_>6 7 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0174809191375971</threshold>
- <left_val>-0.0677478536963463</left_val>
- <right_val>0.3422436118125916</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 4 6 -1.</_>
- <_>7 6 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1303298026323319</threshold>
- <left_val>0.0108534395694733</left_val>
- <right_val>-0.5989474058151245</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 6 4 -1.</_>
- <_>7 6 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.1362451631575823e-004</threshold>
- <left_val>-0.1881096959114075</left_val>
- <right_val>0.1093890964984894</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 4 6 -1.</_>
- <_>7 3 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0387644208967686</threshold>
- <left_val>-0.2692834138870239</left_val>
- <right_val>0.0201565697789192</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 6 8 -1.</_>
- <_>4 6 3 4 2.</_>
- <_>7 10 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8952922224998474e-003</threshold>
- <left_val>-0.2367085069417954</left_val>
- <right_val>0.0706935375928879</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 6 16 -1.</_>
- <_>8 20 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0843806117773056</threshold>
- <left_val>-0.0617771111428738</left_val>
- <right_val>0.1513081938028336</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 10 3 -1.</_>
- <_>5 4 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0548328608274460</threshold>
- <left_val>-0.4994516074657440</left_val>
- <right_val>0.0359158106148243</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 4 13 -1.</_>
- <_>8 2 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.4148300550878048e-003</threshold>
- <left_val>0.0821169093251228</left_val>
- <right_val>-0.1367274969816208</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 10 14 -1.</_>
- <_>1 1 5 7 2.</_>
- <_>6 8 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1281372010707855</threshold>
- <left_val>-0.0397552810609341</left_val>
- <right_val>0.6034091114997864</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 25 8 3 -1.</_>
- <_>6 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4217561371624470e-003</threshold>
- <left_val>-0.0746426135301590</left_val>
- <right_val>0.1023570001125336</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 25 8 3 -1.</_>
- <_>4 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.1978997766564135e-006</threshold>
- <left_val>0.0745955929160118</left_val>
- <right_val>-0.2904655933380127</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 13 3 13 -1.</_>
- <_>7 13 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0733218863606453</threshold>
- <left_val>-0.0213644690811634</left_val>
- <right_val>0.6980969905853272</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 24 6 4 -1.</_>
- <_>4 24 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0225664693862200</threshold>
- <left_val>-0.5371477007865906</left_val>
- <right_val>0.0365099683403969</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 4 7 -1.</_>
- <_>8 8 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0293380804359913</threshold>
- <left_val>0.1062619984149933</left_val>
- <right_val>-0.0316522903740406</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 12 3 -1.</_>
- <_>0 8 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0136840902268887</threshold>
- <left_val>-0.0577095411717892</left_val>
- <right_val>0.3035565018653870</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 6 6 -1.</_>
- <_>4 8 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2646618830040097e-004</threshold>
- <left_val>0.1295858025550842</left_val>
- <right_val>-0.1360308974981308</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 7 4 -1.</_>
- <_>3 11 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9828647859394550e-003</threshold>
- <left_val>0.0507346689701080</left_val>
- <right_val>-0.3389672935009003</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 4 18 -1.</_>
- <_>5 16 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0205359794199467</threshold>
- <left_val>0.2602849006652832</left_val>
- <right_val>-0.0722593963146210</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 5 26 -1.</_>
- <_>4 14 5 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1493218988180161</threshold>
- <left_val>-0.5417259931564331</left_val>
- <right_val>0.0445343889296055</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 22 8 6 -1.</_>
- <_>10 22 4 3 2.</_>
- <_>6 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0178947895765305</threshold>
- <left_val>0.4714992940425873</left_val>
- <right_val>-0.0308010708540678</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 22 8 6 -1.</_>
- <_>0 22 4 3 2.</_>
- <_>4 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7443818766623735e-004</threshold>
- <left_val>-0.1968698948621750</left_val>
- <right_val>0.1243302002549171</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 21 8 6 -1.</_>
- <_>9 21 4 3 2.</_>
- <_>5 24 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0598851628601551e-003</threshold>
- <left_val>0.1402866989374161</left_val>
- <right_val>-0.0477513298392296</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 6 4 -1.</_>
- <_>6 0 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0117557998746634</threshold>
- <left_val>-0.2623791098594666</left_val>
- <right_val>0.0599330700933933</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 6 5 -1.</_>
- <_>6 1 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0185596495866776</threshold>
- <left_val>0.1049325019121170</left_val>
- <right_val>-0.0321592614054680</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 4 12 -1.</_>
- <_>6 6 2 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4838409628719091e-003</threshold>
- <left_val>0.0794998928904533</left_val>
- <right_val>-0.2048601061105728</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 8 4 7 -1.</_>
- <_>8 8 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0621333085000515</threshold>
- <left_val>-0.3509109020233154</left_val>
- <right_val>0.0122655602172017</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 4 7 -1.</_>
- <_>4 8 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0440086685121059</threshold>
- <left_val>0.2683838903903961</left_val>
- <right_val>-0.0882848873734474</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 12 8 3 -1.</_>
- <_>6 12 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0750890728086233e-003</threshold>
- <left_val>-0.0455819293856621</left_val>
- <right_val>0.1934330016374588</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 9 5 -1.</_>
- <_>4 11 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0898653715848923</threshold>
- <left_val>-0.4860535860061646</left_val>
- <right_val>0.0451018810272217</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 3 4 14 -1.</_>
- <_>12 3 2 7 2.</_>
- <_>10 10 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6210540197789669e-003</threshold>
- <left_val>0.0877222567796707</left_val>
- <right_val>-0.1668934971094132</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 4 14 -1.</_>
- <_>0 2 2 7 2.</_>
- <_>2 9 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0293709393590689</threshold>
- <left_val>-0.4279470145702362</left_val>
- <right_val>0.0455667898058891</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 9 13 6 -1.</_>
- <_>1 11 13 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0859218165278435</threshold>
- <left_val>-0.6907737851142883</left_val>
- <right_val>0.0151229295879602</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 17 4 2 -1.</_>
- <_>7 17 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.7258282797411084e-004</threshold>
- <left_val>-0.1116608977317810</left_val>
- <right_val>0.1563075929880142</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 15 3 6 -1.</_>
- <_>11 16 1 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.7752440180629492e-003</threshold>
- <left_val>-0.0454094186425209</left_val>
- <right_val>0.0779330879449844</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 15 6 3 -1.</_>
- <_>3 16 6 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.5036190234241076e-005</threshold>
- <left_val>-0.1634947955608368</left_val>
- <right_val>0.1086442023515701</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 19 2 7 -1.</_>
- <_>7 19 1 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.8150300020352006e-003</threshold>
- <left_val>0.0963299125432968</left_val>
- <right_val>-0.1181806027889252</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 12 9 -1.</_>
- <_>3 18 6 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0675883665680885</threshold>
- <left_val>0.2265702039003372</left_val>
- <right_val>-0.0904929265379906</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 19 2 7 -1.</_>
- <_>7 19 1 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0183474905788898</threshold>
- <left_val>0.0163501407951117</left_val>
- <right_val>-0.4487788081169128</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 19 7 2 -1.</_>
- <_>7 19 7 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0108225103467703</threshold>
- <left_val>-0.4962235093116760</left_val>
- <right_val>0.0407033301889896</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 3 13 -1.</_>
- <_>8 15 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0174279995262623</threshold>
- <left_val>-0.0354756899178028</left_val>
- <right_val>0.3085643053054810</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 8 7 -1.</_>
- <_>4 16 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0787531211972237</threshold>
- <left_val>-0.6714407801628113</left_val>
- <right_val>0.0261704698204994</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 21 10 6 -1.</_>
- <_>9 21 5 3 2.</_>
- <_>4 24 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3261657962575555e-004</threshold>
- <left_val>-0.1030958965420723</left_val>
- <right_val>0.0645039826631546</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 21 10 6 -1.</_>
- <_>0 21 5 3 2.</_>
- <_>5 24 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0281850099563599</threshold>
- <left_val>-0.0551248118281364</left_val>
- <right_val>0.3113391995429993</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 14 6 7 -1.</_>
- <_>10 16 2 7 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0155364703387022</threshold>
- <left_val>-0.0855273008346558</left_val>
- <right_val>0.0490242093801498</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 20 12 4 -1.</_>
- <_>0 20 6 2 2.</_>
- <_>6 22 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0262907296419144</threshold>
- <left_val>-0.6526719927787781</left_val>
- <right_val>0.0244957599788904</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 14 12 10 -1.</_>
- <_>4 14 6 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8586082197725773e-003</threshold>
- <left_val>-0.0585488304495811</left_val>
- <right_val>0.2873598933219910</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 18 6 4 -1.</_>
- <_>6 18 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0750960577279329e-003</threshold>
- <left_val>0.0864257365465164</left_val>
- <right_val>-0.2262724936008453</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 11 2 16 -1.</_>
- <_>11 19 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0567994304001331</threshold>
- <left_val>0.0290484596043825</left_val>
- <right_val>-0.3679820001125336</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 6 14 -1.</_>
- <_>3 10 3 7 2.</_>
- <_>6 17 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0371825993061066</threshold>
- <left_val>-0.0350622795522213</left_val>
- <right_val>0.4509462118148804</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 4 6 -1.</_>
- <_>6 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5590359475463629e-003</threshold>
- <left_val>-0.1789246946573257</left_val>
- <right_val>0.0684595182538033</right_val></_></_></trees>
- <stage_threshold>-30.7173004150390630</stage_threshold>
- <parent>23</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 25 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 3 12 -1.</_>
- <_>6 16 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8595160953700542e-003</threshold>
- <left_val>0.2013258934020996</left_val>
- <right_val>-0.2658714056015015</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 12 18 -1.</_>
- <_>6 9 4 6 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.5950713753700256</threshold>
- <left_val>0.3613406121730804</left_val>
- <right_val>-0.1220315992832184</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 6 10 -1.</_>
- <_>3 4 3 5 2.</_>
- <_>6 9 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0417266003787518</threshold>
- <left_val>-0.0528890006244183</left_val>
- <right_val>0.3908247053623200</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 18 6 4 -1.</_>
- <_>7 18 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0472537502646446</threshold>
- <left_val>0.0149239096790552</left_val>
- <right_val>-0.5054414868354797</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 18 4 6 -1.</_>
- <_>7 18 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.8612194415181875e-004</threshold>
- <left_val>-0.2033773958683014</left_val>
- <right_val>0.1103067025542259</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 4 13 -1.</_>
- <_>6 8 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2683179751038551e-003</threshold>
- <left_val>-0.2089924067258835</left_val>
- <right_val>0.1473315060138702</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 3 12 -1.</_>
- <_>3 6 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0296954102814198</threshold>
- <left_val>0.6619029045104981</left_val>
- <right_val>-0.0672576203942299</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 15 12 12 -1.</_>
- <_>5 15 6 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1309722959995270</threshold>
- <left_val>0.1748578995466232</left_val>
- <right_val>-0.0810295715928078</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 15 4 12 -1.</_>
- <_>5 15 2 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0173167604953051</threshold>
- <left_val>-0.0489086806774139</left_val>
- <right_val>0.4684366881847382</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 19 9 9 -1.</_>
- <_>7 19 3 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1022140979766846</threshold>
- <left_val>-0.2227514982223511</left_val>
- <right_val>0.0774796381592751</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 16 5 4 -1.</_>
- <_>6 17 5 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.9453460592776537e-003</threshold>
- <left_val>0.0397382788360119</left_val>
- <right_val>-0.2810744941234589</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 14 6 8 -1.</_>
- <_>9 14 3 4 2.</_>
- <_>6 18 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0454255901277065</threshold>
- <left_val>0.2419378012418747</left_val>
- <right_val>0.0136219495907426</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 14 6 8 -1.</_>
- <_>2 14 3 4 2.</_>
- <_>5 18 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2699350956827402e-003</threshold>
- <left_val>-0.1624758988618851</left_val>
- <right_val>0.1606360971927643</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 10 16 -1.</_>
- <_>8 2 5 8 2.</_>
- <_>3 10 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1142186969518662</threshold>
- <left_val>0.0157504808157682</left_val>
- <right_val>-0.5738288760185242</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 15 3 12 -1.</_>
- <_>6 15 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0410540699958801</threshold>
- <left_val>0.3052262961864471</left_val>
- <right_val>-0.0558989606797695</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 23 6 4 -1.</_>
- <_>8 23 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0119805401191115</threshold>
- <left_val>0.0174771696329117</left_val>
- <right_val>-0.4070706963539124</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 4 14 -1.</_>
- <_>4 2 2 7 2.</_>
- <_>6 9 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2105259811505675e-003</threshold>
- <left_val>-0.1784096062183380</left_val>
- <right_val>0.1035320982336998</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 8 6 -1.</_>
- <_>7 7 4 3 2.</_>
- <_>3 10 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0223519802093506</threshold>
- <left_val>-0.4756760001182556</left_val>
- <right_val>0.0373113900423050</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 4 6 -1.</_>
- <_>2 7 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0221354793757200</threshold>
- <left_val>-0.0541376285254955</left_val>
- <right_val>0.4286107122898102</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 0 6 24 -1.</_>
- <_>7 6 6 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0158755797892809</threshold>
- <left_val>0.0663736164569855</left_val>
- <right_val>-0.1645548939704895</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 6 14 -1.</_>
- <_>0 13 3 7 2.</_>
- <_>3 20 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0603713691234589</threshold>
- <left_val>0.0386639311909676</left_val>
- <right_val>-0.4649620056152344</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 19 10 6 -1.</_>
- <_>9 19 5 3 2.</_>
- <_>4 22 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0518812388181686</threshold>
- <left_val>-0.5614129900932312</left_val>
- <right_val>5.4471958428621292e-003</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 19 10 6 -1.</_>
- <_>0 19 5 3 2.</_>
- <_>5 22 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9330360228195786e-003</threshold>
- <left_val>-0.1347597986459732</left_val>
- <right_val>0.1374733000993729</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 18 8 10 -1.</_>
- <_>8 18 4 5 2.</_>
- <_>4 23 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3940469622612000e-003</threshold>
- <left_val>-0.0934059172868729</left_val>
- <right_val>0.0351238213479519</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 18 8 10 -1.</_>
- <_>2 18 4 5 2.</_>
- <_>6 23 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0523141510784626</threshold>
- <left_val>0.7531176209449768</left_val>
- <right_val>-0.0292107705026865</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 14 4 14 -1.</_>
- <_>5 14 2 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0568978115916252</threshold>
- <left_val>-0.9185898900032044</left_val>
- <right_val>0.0288624204695225</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 10 16 -1.</_>
- <_>1 2 5 8 2.</_>
- <_>6 10 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2161463946104050</threshold>
- <left_val>-1.</left_val>
- <right_val>6.9490820169448853e-003</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 14 16 -1.</_>
- <_>0 20 14 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1847925931215286</threshold>
- <left_val>-0.0883579924702644</left_val>
- <right_val>0.1900268942117691</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 10 6 -1.</_>
- <_>2 3 5 3 2.</_>
- <_>7 6 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6834658607840538e-003</threshold>
- <left_val>-0.1779156029224396</left_val>
- <right_val>0.0982860773801804</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 3 26 -1.</_>
- <_>10 14 3 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0824480429291725</threshold>
- <left_val>-0.3405865132808685</left_val>
- <right_val>0.0156127195805311</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 4 18 -1.</_>
- <_>0 18 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5926659628748894e-003</threshold>
- <left_val>0.2592946887016296</left_val>
- <right_val>-0.0693704411387444</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 21 4 6 -1.</_>
- <_>8 21 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9748380184173584e-003</threshold>
- <left_val>0.0545341782271862</left_val>
- <right_val>-0.1263083964586258</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 9 8 -1.</_>
- <_>5 6 3 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1637797057628632</threshold>
- <left_val>-0.8372569084167481</left_val>
- <right_val>0.0224467907100916</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 21 4 6 -1.</_>
- <_>9 21 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8845320232212543e-003</threshold>
- <left_val>-0.2100805938243866</left_val>
- <right_val>0.0918143764138222</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 6 8 -1.</_>
- <_>3 0 3 4 2.</_>
- <_>6 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0554963313043118</threshold>
- <left_val>0.5273922085762024</left_val>
- <right_val>-0.0385616384446621</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 20 4 7 -1.</_>
- <_>9 20 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5041809789836407e-003</threshold>
- <left_val>0.0389079898595810</left_val>
- <right_val>-0.2107748985290527</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 10 12 -1.</_>
- <_>6 4 5 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0575163103640080</threshold>
- <left_val>-0.0544424615800381</left_val>
- <right_val>0.3497731983661652</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 2 24 -1.</_>
- <_>6 9 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.4960879497230053e-003</threshold>
- <left_val>0.1045932993292809</left_val>
- <right_val>-0.2295698970556259</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 21 4 6 -1.</_>
- <_>4 21 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8753142366185784e-004</threshold>
- <left_val>0.0740455389022827</left_val>
- <right_val>-0.2373113036155701</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 1 3 26 -1.</_>
- <_>10 14 3 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1121611967682838</threshold>
- <left_val>-0.0259160008281469</left_val>
- <right_val>0.1138947010040283</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 3 26 -1.</_>
- <_>1 14 3 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2175375074148178</threshold>
- <left_val>0.0197278708219528</left_val>
- <right_val>-0.9622092247009277</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 12 14 -1.</_>
- <_>8 9 6 7 2.</_>
- <_>2 16 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4632700476795435e-003</threshold>
- <left_val>-0.0940528213977814</left_val>
- <right_val>0.0643891766667366</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 11 6 8 -1.</_>
- <_>4 15 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.6313979700207710e-003</threshold>
- <left_val>0.2503606081008911</left_val>
- <right_val>-0.0722346529364586</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 9 18 -1.</_>
- <_>5 15 9 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0198585093021393</threshold>
- <left_val>-0.1269809007644653</left_val>
- <right_val>0.0790514871478081</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 9 4 -1.</_>
- <_>4 0 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3804109767079353e-004</threshold>
- <left_val>0.1446664035320282</left_val>
- <right_val>-0.1144407019019127</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 4 6 -1.</_>
- <_>5 10 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0267812404781580</threshold>
- <left_val>0.0176477506756783</left_val>
- <right_val>-0.8315789103507996</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 8 4 -1.</_>
- <_>3 9 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0193311199545860</threshold>
- <left_val>-0.0455000810325146</left_val>
- <right_val>0.5011094808578491</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 12 6 -1.</_>
- <_>8 16 6 3 2.</_>
- <_>2 19 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0416920706629753</threshold>
- <left_val>0.0225023496896029</left_val>
- <right_val>-0.3899222016334534</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 8 22 -1.</_>
- <_>1 2 4 11 2.</_>
- <_>5 13 4 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1129698008298874</threshold>
- <left_val>-0.0324948392808437</left_val>
- <right_val>0.5392962098121643</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 19 6 7 -1.</_>
- <_>9 19 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1683610286563635e-003</threshold>
- <left_val>-0.1719558984041214</left_val>
- <right_val>0.0936198011040688</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 2 18 -1.</_>
- <_>6 13 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3966748528182507e-003</threshold>
- <left_val>0.0576776303350925</left_val>
- <right_val>-0.3043614923954010</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 8 16 -1.</_>
- <_>5 12 8 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1382918059825897</threshold>
- <left_val>-0.5215879082679749</left_val>
- <right_val>0.0184449106454849</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 20 6 2 -1.</_>
- <_>5 20 6 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0125941196456552</threshold>
- <left_val>0.2274890989065170</left_val>
- <right_val>-0.0693250000476837</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 19 3 6 -1.</_>
- <_>11 20 1 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0165144801139832</threshold>
- <left_val>0.1627922952175140</left_val>
- <right_val>-0.0344461500644684</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 22 12 6 -1.</_>
- <_>4 22 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0163928493857384</threshold>
- <left_val>-0.1427768021821976</left_val>
- <right_val>0.1629009991884232</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 25 12 3 -1.</_>
- <_>2 25 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0346064902842045</threshold>
- <left_val>-0.4035637974739075</left_val>
- <right_val>8.3033805713057518e-003</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 19 6 3 -1.</_>
- <_>3 20 6 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.8894061259925365e-003</threshold>
- <left_val>0.2689009010791779</left_val>
- <right_val>-0.0694508627057076</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 20 6 7 -1.</_>
- <_>9 20 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0118794003501534</threshold>
- <left_val>0.2139520943164825</left_val>
- <right_val>-0.0209304504096508</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 17 12 10 -1.</_>
- <_>4 17 4 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9165100529789925e-003</threshold>
- <left_val>0.0684642195701599</left_val>
- <right_val>-0.3145321905612946</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 12 4 -1.</_>
- <_>4 18 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3729350175708532e-003</threshold>
- <left_val>-0.0603400282561779</left_val>
- <right_val>0.2757284045219421</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 19 6 7 -1.</_>
- <_>3 19 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4278028868138790e-003</threshold>
- <left_val>-0.2394450008869171</left_val>
- <right_val>0.0846588388085365</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 22 4 6 -1.</_>
- <_>10 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1290169097483158e-003</threshold>
- <left_val>0.0869384780526161</left_val>
- <right_val>-0.2821848094463348</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 2 24 -1.</_>
- <_>1 4 1 12 2.</_>
- <_>2 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2569470426533371e-005</threshold>
- <left_val>0.1368235945701599</left_val>
- <right_val>-0.1198064982891083</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 5 4 10 -1.</_>
- <_>10 5 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0159578993916512</threshold>
- <left_val>-0.0396103002130985</left_val>
- <right_val>0.2482517063617706</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 4 10 -1.</_>
- <_>2 5 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.9294081553816795e-003</threshold>
- <left_val>0.0811235085129738</left_val>
- <right_val>-0.2656157016754150</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 10 3 15 -1.</_>
- <_>9 10 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0499253086745739</threshold>
- <left_val>0.0150186298415065</left_val>
- <right_val>-0.3664787113666534</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 10 3 15 -1.</_>
- <_>4 10 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0173748396337032</threshold>
- <left_val>0.3397102057933807</left_val>
- <right_val>-0.0544941499829292</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 3 17 -1.</_>
- <_>9 7 1 17 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0783570632338524</threshold>
- <left_val>-0.4943583905696869</left_val>
- <right_val>8.4990533068776131e-003</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 3 17 -1.</_>
- <_>4 7 1 17 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9894477277994156e-003</threshold>
- <left_val>-0.2320985943078995</left_val>
- <right_val>0.0713790878653526</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 3 13 -1.</_>
- <_>10 0 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5932919923216105e-003</threshold>
- <left_val>0.0825047194957733</left_val>
- <right_val>-0.0931231826543808</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 3 13 -1.</_>
- <_>3 0 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6272730901837349e-003</threshold>
- <left_val>-0.1321343034505844</left_val>
- <right_val>0.1309982985258102</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 12 5 -1.</_>
- <_>4 3 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0591081604361534</threshold>
- <left_val>-0.3722976148128510</left_val>
- <right_val>0.0455746613442898</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 7 6 -1.</_>
- <_>4 2 7 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.5086690913885832e-003</threshold>
- <left_val>0.0894784629344940</left_val>
- <right_val>-0.1854341030120850</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 4 8 -1.</_>
- <_>7 2 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0154652204364538</threshold>
- <left_val>-0.0306048206984997</left_val>
- <right_val>0.2075458019971848</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 2 12 -1.</_>
- <_>7 4 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0117490198463202</threshold>
- <left_val>0.3920016884803772</left_val>
- <right_val>-0.0411008596420288</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 16 3 6 -1.</_>
- <_>10 17 1 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0484136082231998</threshold>
- <left_val>3.7391050718724728e-003</left_val>
- <right_val>-0.8570184111595154</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 4 6 -1.</_>
- <_>7 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1499889660626650e-003</threshold>
- <left_val>-0.2244154959917069</left_val>
- <right_val>0.0713050886988640</right_val></_></_></trees>
- <stage_threshold>-30.7402000427246090</stage_threshold>
- <parent>24</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 26 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 5 12 21 -1.</_>
- <_>4 5 6 21 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3242005109786987</threshold>
- <left_val>0.4144775867462158</left_val>
- <right_val>-0.1068423017859459</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 3 12 18 -1.</_>
- <_>2 9 12 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2106568962335587</threshold>
- <left_val>0.2330280989408493</left_val>
- <right_val>-0.0946957990527153</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 12 4 -1.</_>
- <_>4 1 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0215405505150557</threshold>
- <left_val>-0.2889172136783600</left_val>
- <right_val>0.0706660673022270</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 13 3 13 -1.</_>
- <_>7 13 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9726871550083160e-003</threshold>
- <left_val>-0.0905594900250435</left_val>
- <right_val>0.2298959940671921</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 6 12 -1.</_>
- <_>1 1 3 6 2.</_>
- <_>4 7 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0264681000262499</threshold>
- <left_val>-0.0502540506422520</left_val>
- <right_val>0.3934643864631653</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 6 6 6 -1.</_>
- <_>9 6 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0725311264395714</threshold>
- <left_val>-0.3942146897315979</left_val>
- <right_val>7.5547359883785248e-003</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 6 6 -1.</_>
- <_>3 6 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0436849184334278</threshold>
- <left_val>-0.5755354762077332</left_val>
- <right_val>0.0518933199346066</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 2 6 13 -1.</_>
- <_>9 2 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1167066022753716</threshold>
- <left_val>-2.5791339576244354e-003</left_val>
- <right_val>-0.8259764909744263</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 6 13 -1.</_>
- <_>3 2 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0823811665177345</threshold>
- <left_val>0.7581896185874939</left_val>
- <right_val>-0.0265769306570292</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 6 28 -1.</_>
- <_>6 0 2 28 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3157079704105854e-003</threshold>
- <left_val>0.0668586865067482</left_val>
- <right_val>-0.3040786981582642</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 14 3 -1.</_>
- <_>0 14 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0166781898587942</threshold>
- <left_val>0.3852531909942627</left_val>
- <right_val>-0.0488426797091961</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 20 4 7 -1.</_>
- <_>10 20 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0678999610245228e-003</threshold>
- <left_val>-0.2715098857879639</left_val>
- <right_val>0.0645612627267838</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 2 12 -1.</_>
- <_>6 8 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.3884904161095619e-003</threshold>
- <left_val>-0.2826730012893677</left_val>
- <right_val>0.0707788914442062</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 4 8 -1.</_>
- <_>5 16 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0213579107075930</threshold>
- <left_val>-0.0661064833402634</left_val>
- <right_val>0.3186753988265991</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 6 8 -1.</_>
- <_>3 0 3 4 2.</_>
- <_>6 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0636979974806309e-003</threshold>
- <left_val>0.1173984035849571</left_val>
- <right_val>-0.1510592997074127</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 6 8 -1.</_>
- <_>8 0 3 4 2.</_>
- <_>5 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1475679930299520e-003</threshold>
- <left_val>0.0642628967761993</left_val>
- <right_val>-0.0744720771908760</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 6 8 -1.</_>
- <_>3 0 3 4 2.</_>
- <_>6 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0181456897407770</threshold>
- <left_val>-0.0569460093975067</left_val>
- <right_val>0.4210714995861054</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 20 4 7 -1.</_>
- <_>10 20 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0288350321352482e-003</threshold>
- <left_val>0.0838666707277298</left_val>
- <right_val>-0.3392939865589142</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 15 4 12 -1.</_>
- <_>5 15 2 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0579163618385792</threshold>
- <left_val>0.4517017900943756</left_val>
- <right_val>-0.0431988686323166</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 16 4 6 -1.</_>
- <_>7 16 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0310252998024225</threshold>
- <left_val>0.0280007403343916</left_val>
- <right_val>-0.1681894063949585</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 6 9 -1.</_>
- <_>6 2 3 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0821342915296555</threshold>
- <left_val>0.0199995301663876</left_val>
- <right_val>-0.7691050767898560</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 2 12 2 -1.</_>
- <_>2 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0736665725708008</threshold>
- <left_val>-1.2391459895297885e-003</left_val>
- <right_val>-1.0004559755325317</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 12 2 -1.</_>
- <_>6 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5681830700486898e-004</threshold>
- <left_val>-0.1215459033846855</left_val>
- <right_val>0.1356196999549866</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 6 4 -1.</_>
- <_>6 1 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0451309308409691</threshold>
- <left_val>4.7123869881033897e-003</left_val>
- <right_val>-0.2967104911804199</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 4 6 -1.</_>
- <_>0 5 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1468348829075694e-004</threshold>
- <left_val>0.1460689008235931</left_val>
- <right_val>-0.1360048055648804</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 8 4 -1.</_>
- <_>5 6 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0149811198934913</threshold>
- <left_val>-0.1793365925550461</left_val>
- <right_val>0.0539286993443966</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 8 12 2 -1.</_>
- <_>1 9 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0271517895162106</threshold>
- <left_val>-0.6752901077270508</left_val>
- <right_val>0.0230467803776264</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 6 8 -1.</_>
- <_>8 9 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0665780231356621</threshold>
- <left_val>-0.6558642983436585</left_val>
- <right_val>4.7667929902672768e-003</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 6 8 -1.</_>
- <_>0 9 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3119178842753172e-003</threshold>
- <left_val>0.1225500032305718</left_val>
- <right_val>-0.1633393019437790</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 15 2 12 -1.</_>
- <_>11 15 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0158111806958914</threshold>
- <left_val>-0.4473117887973785</left_val>
- <right_val>8.9029967784881592e-003</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 15 3 12 -1.</_>
- <_>3 15 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6757620768621564e-005</threshold>
- <left_val>0.1494435071945190</left_val>
- <right_val>-0.1068682968616486</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 15 2 12 -1.</_>
- <_>11 15 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0106024900451303</threshold>
- <left_val>0.0216858293861151</left_val>
- <right_val>-0.3220812976360321</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 12 6 16 -1.</_>
- <_>1 12 3 8 2.</_>
- <_>4 20 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1245649550110102e-003</threshold>
- <left_val>-0.2042573988437653</left_val>
- <right_val>0.0823309570550919</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 10 5 -1.</_>
- <_>4 10 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0476385802030563</threshold>
- <left_val>-0.0327284410595894</left_val>
- <right_val>0.4472625851631165</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 16 8 3 -1.</_>
- <_>3 17 8 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0113001996651292</threshold>
- <left_val>0.2554602026939392</left_val>
- <right_val>-0.0699698999524117</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 25 12 3 -1.</_>
- <_>6 25 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1472209589555860e-003</threshold>
- <left_val>0.0474677905440331</left_val>
- <right_val>-0.2222079038619995</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 10 8 -1.</_>
- <_>1 10 5 4 2.</_>
- <_>6 14 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0180086400359869</threshold>
- <left_val>-0.0608602091670036</left_val>
- <right_val>0.2908244132995606</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 14 6 -1.</_>
- <_>7 12 7 3 2.</_>
- <_>0 15 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0116342604160309</threshold>
- <left_val>-0.3147492110729218</left_val>
- <right_val>0.0836308971047401</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 20 8 8 -1.</_>
- <_>2 20 4 4 2.</_>
- <_>6 24 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5580541267991066e-003</threshold>
- <left_val>-0.1212183013558388</left_val>
- <right_val>0.1312450021505356</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 16 2 7 -1.</_>
- <_>12 16 1 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.3253620602190495e-003</threshold>
- <left_val>-0.0871386229991913</left_val>
- <right_val>0.0704765170812607</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 17 12 4 -1.</_>
- <_>4 17 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0214862208813429</threshold>
- <left_val>-0.0359365493059158</left_val>
- <right_val>0.4373702108860016</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 6 14 -1.</_>
- <_>7 9 2 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1258939951658249</threshold>
- <left_val>0.0124431503936648</left_val>
- <right_val>-0.9282261729240418</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 6 14 -1.</_>
- <_>5 9 2 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2191529569681734e-004</threshold>
- <left_val>0.0697983428835869</left_val>
- <right_val>-0.3210623860359192</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 9 12 -1.</_>
- <_>6 12 3 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0581751987338066</threshold>
- <left_val>-0.0770256295800209</left_val>
- <right_val>0.0967479869723320</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 4 19 -1.</_>
- <_>7 4 2 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5887380838394165e-004</threshold>
- <left_val>0.1141244992613792</left_val>
- <right_val>-0.1471917033195496</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 4 19 -1.</_>
- <_>5 5 2 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0408370196819305</threshold>
- <left_val>0.4765458106994629</left_val>
- <right_val>-0.0497375689446926</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 10 10 18 -1.</_>
- <_>2 10 5 9 2.</_>
- <_>7 19 5 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.7786840051412582e-003</threshold>
- <left_val>-0.2051378041505814</left_val>
- <right_val>0.0844689831137657</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 9 15 -1.</_>
- <_>3 8 9 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2796426117420197</threshold>
- <left_val>-0.0300348699092865</left_val>
- <right_val>0.6952624917030335</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 8 12 -1.</_>
- <_>3 11 8 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0888691172003746</threshold>
- <left_val>0.2408183962106705</left_val>
- <right_val>-0.0705763772130013</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 6 8 -1.</_>
- <_>6 11 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0140954600647092</threshold>
- <left_val>-0.1045643985271454</left_val>
- <right_val>0.0466049797832966</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 2 12 -1.</_>
- <_>2 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6836670003831387e-003</threshold>
- <left_val>0.0604959689080715</left_val>
- <right_val>-0.2578496932983398</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 3 18 -1.</_>
- <_>11 12 3 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0870512798428535</threshold>
- <left_val>-0.0241736695170403</left_val>
- <right_val>0.2404305934906006</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 3 18 -1.</_>
- <_>0 12 3 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0101780397817492</threshold>
- <left_val>0.2546978890895844</left_val>
- <right_val>-0.0928905084729195</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 10 6 -1.</_>
- <_>7 8 5 3 2.</_>
- <_>2 11 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0314531698822975e-003</threshold>
- <left_val>-0.2634347975254059</left_val>
- <right_val>0.0708488076925278</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 3 23 -1.</_>
- <_>1 3 1 23 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.7082298919558525e-003</threshold>
- <left_val>0.2331347018480301</left_val>
- <right_val>-0.0762718096375465</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 3 6 5 -1.</_>
- <_>7 3 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0676144734025002</threshold>
- <left_val>-0.5201326012611389</left_val>
- <right_val>0.0137851601466537</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 10 28 -1.</_>
- <_>2 14 10 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3963688015937805</threshold>
- <left_val>-0.7626718878746033</left_val>
- <right_val>0.0206865202635527</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 17 8 6 -1.</_>
- <_>10 17 4 3 2.</_>
- <_>6 20 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2813470093533397e-003</threshold>
- <left_val>-0.1404623985290527</left_val>
- <right_val>0.1271191984415054</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 4 14 -1.</_>
- <_>4 13 2 7 2.</_>
- <_>6 20 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4416065365076065e-003</threshold>
- <left_val>0.0747128278017044</left_val>
- <right_val>-0.2566313147544861</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 7 2 12 -1.</_>
- <_>12 7 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4749030015082099e-005</threshold>
- <left_val>-0.1401512026786804</left_val>
- <right_val>0.1521048992872238</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 6 5 -1.</_>
- <_>4 3 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0450732111930847</threshold>
- <left_val>-0.6426286101341248</left_val>
- <right_val>0.0259254500269890</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 7 2 12 -1.</_>
- <_>12 7 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7068619430065155e-003</threshold>
- <left_val>0.0324856899678707</left_val>
- <right_val>-0.2037702947854996</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 2 12 -1.</_>
- <_>1 7 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9383822372183204e-004</threshold>
- <left_val>-0.1295032948255539</left_val>
- <right_val>0.1621938049793243</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 6 6 -1.</_>
- <_>6 12 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3042639475315809e-003</threshold>
- <left_val>0.0863188430666924</left_val>
- <right_val>-0.1922470927238464</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 10 5 -1.</_>
- <_>5 10 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4417850226163864e-003</threshold>
- <left_val>-0.0715060532093048</left_val>
- <right_val>0.3062734901905060</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 9 12 8 -1.</_>
- <_>5 9 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0156303308904171</threshold>
- <left_val>0.0495155490934849</left_val>
- <right_val>-0.1484034955501556</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 4 12 -1.</_>
- <_>2 7 2 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0113956201821566</threshold>
- <left_val>0.0633552968502045</left_val>
- <right_val>-0.2557640969753265</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 16 3 6 -1.</_>
- <_>12 17 1 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0475444309413433</threshold>
- <left_val>4.8167328350245953e-003</left_val>
- <right_val>-0.7898777723312378</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 2 12 -1.</_>
- <_>6 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3856023848056793e-003</threshold>
- <left_val>-0.0430120117962360</left_val>
- <right_val>0.4110831916332245</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 16 3 6 -1.</_>
- <_>12 17 1 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.6369849909096956e-003</threshold>
- <left_val>0.0824732929468155</left_val>
- <right_val>-0.0789568126201630</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 2 14 -1.</_>
- <_>7 6 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0165131092071533</threshold>
- <left_val>-0.5069249272346497</left_val>
- <right_val>0.0390719100832939</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 8 11 -1.</_>
- <_>5 2 4 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1035835966467857</threshold>
- <left_val>0.0207722708582878</left_val>
- <right_val>-0.6937174797058106</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 3 22 -1.</_>
- <_>6 3 1 22 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0333618409931660</threshold>
- <left_val>-0.0444790087640285</left_val>
- <right_val>0.4639281928539276</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 7 4 6 -1.</_>
- <_>5 10 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0286644306033850</threshold>
- <left_val>-0.4588367044925690</left_val>
- <right_val>0.0356761701405048</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 6 4 -1.</_>
- <_>4 11 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1209170043002814e-004</threshold>
- <left_val>0.0843445137143135</left_val>
- <right_val>-0.2155565023422241</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 25 8 3 -1.</_>
- <_>5 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0176902003586292</threshold>
- <left_val>9.7461966797709465e-003</left_val>
- <right_val>-0.8526154160499573</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 6 4 -1.</_>
- <_>4 8 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0218784697353840</threshold>
- <left_val>0.2634595036506653</left_val>
- <right_val>-0.0702206417918205</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 10 8 -1.</_>
- <_>4 9 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1242443025112152</threshold>
- <left_val>-0.2865940928459168</left_val>
- <right_val>0.0218161400407553</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 6 6 -1.</_>
- <_>0 15 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0657360926270485</threshold>
- <left_val>0.0236005801707506</left_val>
- <right_val>-0.7026379108428955</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 25 8 3 -1.</_>
- <_>5 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0446337014436722</threshold>
- <left_val>-0.9577643275260925</left_val>
- <right_val>3.5877549089491367e-003</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 10 6 -1.</_>
- <_>0 13 5 3 2.</_>
- <_>5 16 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0642715767025948</threshold>
- <left_val>0.6009951829910278</left_val>
- <right_val>-0.0285576190799475</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 7 3 15 -1.</_>
- <_>7 7 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6516240874771029e-005</threshold>
- <left_val>-0.1348548978567123</left_val>
- <right_val>0.1108092963695526</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 14 15 -1.</_>
- <_>0 6 14 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3419260503724217e-003</threshold>
- <left_val>0.0983250066637993</left_val>
- <right_val>-0.1688349992036820</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 8 8 -1.</_>
- <_>6 6 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0218897294253111</threshold>
- <left_val>-0.2188055068254471</left_val>
- <right_val>0.0296206790953875</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 10 12 8 -1.</_>
- <_>0 12 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9670790061354637e-003</threshold>
- <left_val>0.0976428091526031</left_val>
- <right_val>-0.1806287020444870</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 6 6 -1.</_>
- <_>8 3 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0761965215206146</threshold>
- <left_val>-0.8638762235641480</left_val>
- <right_val>7.3730680160224438e-003</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 6 6 -1.</_>
- <_>0 3 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9841358819976449e-004</threshold>
- <left_val>0.1535367965698242</left_val>
- <right_val>-0.1210580989718437</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 25 8 3 -1.</_>
- <_>5 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2246732199564576e-004</threshold>
- <left_val>0.0407943390309811</left_val>
- <right_val>-0.1373779028654099</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 6 6 -1.</_>
- <_>6 0 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0324649997055531e-003</threshold>
- <left_val>0.1208821013569832</left_val>
- <right_val>-0.1408873051404953</right_val></_></_></trees>
- <stage_threshold>-30.7607002258300780</stage_threshold>
- <parent>25</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 27 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 12 4 -1.</_>
- <_>4 16 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0527186505496502</threshold>
- <left_val>0.2598567903041840</left_val>
- <right_val>-0.1572197973728180</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 4 6 4 -1.</_>
- <_>8 4 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.1614670082926750e-003</threshold>
- <left_val>-0.1027185991406441</left_val>
- <right_val>0.0593469813466072</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 4 6 -1.</_>
- <_>6 4 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0676990672945976</threshold>
- <left_val>-0.0773112624883652</left_val>
- <right_val>0.2860201001167297</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 6 4 -1.</_>
- <_>4 6 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0338220112025738</threshold>
- <left_val>-0.5699905753135681</left_val>
- <right_val>0.0406845286488533</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 15 7 4 -1.</_>
- <_>6 15 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0537463985383511</threshold>
- <left_val>-0.4742139875888825</left_val>
- <right_val>0.0627515912055969</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 6 4 -1.</_>
- <_>4 6 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0305595602840185</threshold>
- <left_val>0.7163878083229065</left_val>
- <right_val>-0.0174239501357079</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 6 4 -1.</_>
- <_>4 6 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0338220112025738</threshold>
- <left_val>-0.6728317737579346</left_val>
- <right_val>-1.2177439639344811e-003</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 3 12 -1.</_>
- <_>9 2 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7876009698957205e-004</threshold>
- <left_val>-0.0702052265405655</left_val>
- <right_val>0.1164873018860817</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 3 12 -1.</_>
- <_>4 2 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5016230065375566e-003</threshold>
- <left_val>0.1291521042585373</left_val>
- <right_val>-0.1357607990503311</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 8 28 -1.</_>
- <_>6 0 4 28 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0908358395099640</threshold>
- <left_val>4.1303969919681549e-003</left_val>
- <right_val>0.4011166095733643</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 8 28 -1.</_>
- <_>4 0 4 28 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0256032608449459</threshold>
- <left_val>-0.1005948036909103</left_val>
- <right_val>0.1881915926933289</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 15 4 8 -1.</_>
- <_>8 15 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0521344617009163</threshold>
- <left_val>0.2528272867202759</left_val>
- <right_val>-0.1144765987992287</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 22 8 6 -1.</_>
- <_>0 22 4 3 2.</_>
- <_>4 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0384620688855648</threshold>
- <left_val>0.0558288693428040</left_val>
- <right_val>-0.5763548016548157</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 20 4 4 -1.</_>
- <_>8 21 2 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.4195869443938136e-003</threshold>
- <left_val>0.0457690991461277</left_val>
- <right_val>-0.1600112020969391</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 15 6 6 -1.</_>
- <_>6 15 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0764881670475006</threshold>
- <left_val>-0.5253133773803711</left_val>
- <right_val>0.0520116500556469</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 6 9 -1.</_>
- <_>6 10 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2786199804395437e-003</threshold>
- <left_val>0.0760514065623283</left_val>
- <right_val>-0.2510409057140350</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 4 17 -1.</_>
- <_>6 8 2 17 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2661969522014260e-003</threshold>
- <left_val>-0.1241165027022362</left_val>
- <right_val>0.1637594997882843</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 16 2 12 -1.</_>
- <_>7 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0841390192508698e-003</threshold>
- <left_val>0.2261393070220947</left_val>
- <right_val>-0.0545596182346344</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 11 2 12 -1.</_>
- <_>7 11 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4418167059775442e-005</threshold>
- <left_val>-0.1648879945278168</left_val>
- <right_val>0.1086440011858940</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 14 12 -1.</_>
- <_>0 12 7 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5643699336796999e-003</threshold>
- <left_val>-0.1893323957920075</left_val>
- <right_val>0.1029883027076721</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 4 24 -1.</_>
- <_>0 10 4 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0349972285330296</threshold>
- <left_val>0.2374626994132996</left_val>
- <right_val>-0.0823906883597374</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 4 8 -1.</_>
- <_>8 4 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0194228291511536</threshold>
- <left_val>-0.0996915400028229</left_val>
- <right_val>0.0403765588998795</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 24 12 4 -1.</_>
- <_>4 24 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0596014782786369</threshold>
- <left_val>-0.9116243124008179</left_val>
- <right_val>0.0183674208819866</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 8 18 -1.</_>
- <_>5 18 8 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3404640853404999</threshold>
- <left_val>6.0519641265273094e-003</left_val>
- <right_val>-0.4458416104316711</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 3 22 -1.</_>
- <_>2 4 1 22 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5878271125257015e-003</threshold>
- <left_val>-0.0957677513360977</left_val>
- <right_val>0.1808755993843079</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 16 2 12 -1.</_>
- <_>11 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3841830231249332e-003</threshold>
- <left_val>0.0526585616171360</left_val>
- <right_val>-0.4520238935947418</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 16 2 12 -1.</_>
- <_>2 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9094972461462021e-003</threshold>
- <left_val>0.0380643010139465</left_val>
- <right_val>-0.4598438143730164</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 1 8 6 -1.</_>
- <_>8 1 4 3 2.</_>
- <_>4 4 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0175665393471718</threshold>
- <left_val>0.1113914027810097</left_val>
- <right_val>-0.0295645091682673</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 8 6 -1.</_>
- <_>2 1 4 3 2.</_>
- <_>6 4 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1352599831297994e-003</threshold>
- <left_val>0.1082551032304764</left_val>
- <right_val>-0.1835540980100632</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 0 8 20 -1.</_>
- <_>4 10 8 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1423728018999100</threshold>
- <left_val>-0.0319952294230461</left_val>
- <right_val>0.3809931874275208</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 9 6 -1.</_>
- <_>0 8 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1002440974116325</threshold>
- <left_val>-0.7746186256408691</left_val>
- <right_val>0.0239925999194384</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 8 16 -1.</_>
- <_>3 8 8 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1245379969477654</threshold>
- <left_val>0.2125505954027176</left_val>
- <right_val>-0.0917487591505051</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 11 6 16 -1.</_>
- <_>3 19 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1964138001203537</threshold>
- <left_val>0.0330282710492611</left_val>
- <right_val>-0.6022315025329590</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 6 12 -1.</_>
- <_>7 9 3 6 2.</_>
- <_>4 15 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0414673388004303</threshold>
- <left_val>-0.8826444745063782</left_val>
- <right_val>0.0133995404466987</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 20 4 3 -1.</_>
- <_>6 21 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0300201997160912</threshold>
- <left_val>0.5815895199775696</left_val>
- <right_val>-0.0398013107478619</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 12 2 -1.</_>
- <_>2 7 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0190021507441998</threshold>
- <left_val>-0.0245082303881645</left_val>
- <right_val>0.3225910067558289</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 6 4 -1.</_>
- <_>4 2 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0108372801914811</threshold>
- <left_val>-0.2542868852615356</left_val>
- <right_val>0.0733845233917236</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 6 5 -1.</_>
- <_>8 1 3 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0244938600808382</threshold>
- <left_val>0.1488355994224548</left_val>
- <right_val>-0.0367299504578114</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 4 6 -1.</_>
- <_>7 4 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.7652618959546089e-003</threshold>
- <left_val>0.1269364058971405</left_val>
- <right_val>-0.1915761977434158</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 5 6 20 -1.</_>
- <_>4 10 6 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0124380104243755</threshold>
- <left_val>0.0717270076274872</left_val>
- <right_val>-0.2542191147804260</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 4 13 -1.</_>
- <_>4 8 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0212753191590309</threshold>
- <left_val>-0.0493925884366035</left_val>
- <right_val>0.5271543264389038</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 14 8 -1.</_>
- <_>7 0 7 4 2.</_>
- <_>0 4 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0673698335886002</threshold>
- <left_val>-0.4689128100872040</left_val>
- <right_val>0.0428815484046936</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 4 6 -1.</_>
- <_>7 0 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0925510432571173e-003</threshold>
- <left_val>0.1125015020370483</left_val>
- <right_val>-0.1368837952613831</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 4 12 -1.</_>
- <_>6 6 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0978634282946587</threshold>
- <left_val>-0.8516709208488464</left_val>
- <right_val>7.9745445400476456e-003</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 14 4 7 -1.</_>
- <_>4 14 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0980979315936565e-003</threshold>
- <left_val>0.0725561976432800</left_val>
- <right_val>-0.2125356048345566</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 6 4 -1.</_>
- <_>5 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0449756681919098</threshold>
- <left_val>-6.4254011958837509e-003</left_val>
- <right_val>0.6733464002609253</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 8 19 -1.</_>
- <_>7 0 4 19 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0209705308079720</threshold>
- <left_val>-0.1534136980772018</left_val>
- <right_val>0.1122943982481957</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 4 15 -1.</_>
- <_>5 5 2 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1862142067402601e-004</threshold>
- <left_val>-0.1369003951549530</left_val>
- <right_val>0.1232310980558395</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 12 3 -1.</_>
- <_>1 12 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0119219999760389</threshold>
- <left_val>-0.0520369112491608</left_val>
- <right_val>0.3509553968906403</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 6 4 -1.</_>
- <_>5 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0129568902775645</threshold>
- <left_val>0.0878135785460472</left_val>
- <right_val>-0.0281739197671413</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 10 5 6 -1.</_>
- <_>1 13 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0279726497828960</threshold>
- <left_val>-0.5901845097541809</left_val>
- <right_val>0.0247701294720173</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 6 4 -1.</_>
- <_>5 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0088839381933212e-003</threshold>
- <left_val>-0.0659633576869965</left_val>
- <right_val>0.0362772904336452</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 13 3 -1.</_>
- <_>0 14 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0854439139366150e-003</threshold>
- <left_val>0.1821193993091583</left_val>
- <right_val>-0.0895676687359810</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 4 6 4 -1.</_>
- <_>5 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3200960867106915e-003</threshold>
- <left_val>0.0238888505846262</left_val>
- <right_val>-0.1060646027326584</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 4 6 4 -1.</_>
- <_>6 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0206336192786694</threshold>
- <left_val>-0.0381768010556698</left_val>
- <right_val>0.5213416218757629</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 22 4 6 -1.</_>
- <_>8 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5221719406545162e-003</threshold>
- <left_val>0.0465103685855865</left_val>
- <right_val>-0.0939578711986542</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 22 4 6 -1.</_>
- <_>4 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6648699790239334e-003</threshold>
- <left_val>-0.2373497933149338</left_val>
- <right_val>0.0806084200739861</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 22 4 6 -1.</_>
- <_>8 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5844529736787081e-003</threshold>
- <left_val>-0.0242755599319935</left_val>
- <right_val>0.2288825064897537</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 22 4 6 -1.</_>
- <_>4 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4966880371503066e-005</threshold>
- <left_val>0.0993802025914192</left_val>
- <right_val>-0.1983017027378082</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 14 3 -1.</_>
- <_>0 14 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2676537781953812e-003</threshold>
- <left_val>-0.0743672326207161</left_val>
- <right_val>0.2279033958911896</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 19 7 2 -1.</_>
- <_>7 19 7 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0263475496321917</threshold>
- <left_val>0.0192854590713978</left_val>
- <right_val>-0.8868331909179688</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 6 12 -1.</_>
- <_>6 13 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0602689497172832</threshold>
- <left_val>0.1256269067525864</left_val>
- <right_val>-0.0337168686091900</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 26 12 2 -1.</_>
- <_>6 26 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8371770642697811e-003</threshold>
- <left_val>-0.1773530989885330</left_val>
- <right_val>0.0885887369513512</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 25 12 3 -1.</_>
- <_>2 25 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5063549876213074e-003</threshold>
- <left_val>-0.0871009081602097</left_val>
- <right_val>0.0566508583724499</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 24 14 4 -1.</_>
- <_>0 24 7 2 2.</_>
- <_>7 26 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.1536881625652313e-003</threshold>
- <left_val>0.2586381137371063</left_val>
- <right_val>-0.0596906095743179</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>12 3 2 12 -1.</_>
- <_>12 3 1 12 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0385741293430328</threshold>
- <left_val>8.4148198366165161e-003</left_val>
- <right_val>-0.4340906143188477</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 4 12 -1.</_>
- <_>3 2 2 6 2.</_>
- <_>5 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0392696596682072</threshold>
- <left_val>0.3546951115131378</left_val>
- <right_val>-0.0432481691241264</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 3 17 -1.</_>
- <_>7 1 1 17 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7512469785287976e-003</threshold>
- <left_val>0.0868160873651505</left_val>
- <right_val>-0.0969246327877045</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 8 7 -1.</_>
- <_>5 6 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0840612500905991</threshold>
- <left_val>-0.6525657176971436</left_val>
- <right_val>0.0247653201222420</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 3 12 -1.</_>
- <_>7 0 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0434175394475460</threshold>
- <left_val>-0.5620542764663696</left_val>
- <right_val>9.8713487386703491e-003</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 3 12 -1.</_>
- <_>6 0 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0136431697756052</threshold>
- <left_val>0.2456213980913162</left_val>
- <right_val>-0.0605527088046074</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 3 17 -1.</_>
- <_>7 1 1 17 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0164903607219458</threshold>
- <left_val>0.0388668887317181</left_val>
- <right_val>-0.2771584987640381</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 8 8 -1.</_>
- <_>3 8 4 4 2.</_>
- <_>7 12 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0144229000434279</threshold>
- <left_val>-0.2282046973705292</left_val>
- <right_val>0.0590268410742283</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 15 3 12 -1.</_>
- <_>9 15 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7178740128874779e-003</threshold>
- <left_val>-0.1188718006014824</left_val>
- <right_val>0.1219222992658615</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 10 12 -1.</_>
- <_>0 16 5 6 2.</_>
- <_>5 22 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3701239414513111e-003</threshold>
- <left_val>-0.1716777980327606</left_val>
- <right_val>0.0995554178953171</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 2 8 22 -1.</_>
- <_>10 2 4 11 2.</_>
- <_>6 13 4 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0812902003526688</threshold>
- <left_val>-0.0225097406655550</left_val>
- <right_val>0.2447286993265152</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 25 12 3 -1.</_>
- <_>6 25 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4793650188948959e-004</threshold>
- <left_val>0.0808456912636757</left_val>
- <right_val>-0.2168036997318268</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 14 12 14 -1.</_>
- <_>2 14 6 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.9097941741347313e-004</threshold>
- <left_val>0.0622812397778034</left_val>
- <right_val>-0.1408240944147110</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 14 8 10 -1.</_>
- <_>4 14 4 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0114553598687053</threshold>
- <left_val>-0.1172252967953682</left_val>
- <right_val>0.1594851016998291</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 13 6 14 -1.</_>
- <_>7 13 2 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1633439958095551</threshold>
- <left_val>-0.3472715020179749</left_val>
- <right_val>0.0110032502561808</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 13 6 14 -1.</_>
- <_>5 13 2 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0686523020267487</threshold>
- <left_val>0.2544158101081848</left_val>
- <right_val>-0.0787787586450577</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 12 8 13 -1.</_>
- <_>6 12 4 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9226641207933426e-003</threshold>
- <left_val>-0.0298005696386099</left_val>
- <right_val>0.2045527994632721</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 12 8 13 -1.</_>
- <_>4 12 4 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1085160002112389</threshold>
- <left_val>-0.4737502932548523</left_val>
- <right_val>0.0407044403254986</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 22 10 6 -1.</_>
- <_>8 22 5 3 2.</_>
- <_>3 25 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0588681511580944</threshold>
- <left_val>1.3014429714530706e-003</left_val>
- <right_val>-1.0001180171966553</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 22 10 6 -1.</_>
- <_>1 22 5 3 2.</_>
- <_>6 25 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5332780312746763e-003</threshold>
- <left_val>-0.1644199043512344</left_val>
- <right_val>0.0994952693581581</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 5 6 9 -1.</_>
- <_>8 8 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5576220359653234e-003</threshold>
- <left_val>0.0814589336514473</left_val>
- <right_val>-0.0909456834197044</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 12 6 -1.</_>
- <_>0 8 6 3 2.</_>
- <_>6 11 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6009950563311577e-003</threshold>
- <left_val>0.0867608934640884</left_val>
- <right_val>-0.1987220942974091</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 6 3 13 -1.</_>
- <_>10 6 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0109860803931952</threshold>
- <left_val>-0.0482303202152252</left_val>
- <right_val>0.1926449984312058</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 5 24 -1.</_>
- <_>0 14 5 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4403300853446126e-004</threshold>
- <left_val>0.2011567056179047</left_val>
- <right_val>-0.0830598101019859</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 11 3 8 -1.</_>
- <_>11 15 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9464240651577711e-004</threshold>
- <left_val>-0.1280869990587235</left_val>
- <right_val>0.0666525363922119</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 3 17 -1.</_>
- <_>6 1 1 17 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0413200818002224</threshold>
- <left_val>-0.5351092219352722</left_val>
- <right_val>0.0295785907655954</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 5 8 8 -1.</_>
- <_>7 5 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0819299966096878</threshold>
- <left_val>-0.0169396102428436</left_val>
- <right_val>0.7652422189712524</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 16 2 12 -1.</_>
- <_>4 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0147583996877074</threshold>
- <left_val>0.0272067803889513</left_val>
- <right_val>-0.6260780096054077</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 3 6 18 -1.</_>
- <_>8 9 2 6 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1757709980010986</threshold>
- <left_val>0.1032833009958267</left_val>
- <right_val>-0.0518636181950569</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 4 12 -1.</_>
- <_>4 6 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0104924496263266</threshold>
- <left_val>-0.1942481994628906</left_val>
- <right_val>0.0858353078365326</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 1 4 12 -1.</_>
- <_>5 4 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6793028488755226e-003</threshold>
- <left_val>0.1625234931707382</left_val>
- <right_val>-0.1160741001367569</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 12 12 -1.</_>
- <_>5 4 4 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0770260915160179</threshold>
- <left_val>-0.1658536940813065</left_val>
- <right_val>0.1048763990402222</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 6 5 -1.</_>
- <_>6 0 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0882552415132523</threshold>
- <left_val>-4.2857029475271702e-003</left_val>
- <right_val>1.0002230405807495</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 6 5 -1.</_>
- <_>5 0 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5600788649171591e-004</threshold>
- <left_val>0.1321841031312943</left_val>
- <right_val>-0.1475474983453751</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 5 3 21 -1.</_>
- <_>7 5 1 21 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0345324687659740</threshold>
- <left_val>-0.0478740595281124</left_val>
- <right_val>0.2770858108997345</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 6 24 -1.</_>
- <_>1 0 3 12 2.</_>
- <_>4 12 3 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1097825020551682</threshold>
- <left_val>-0.0216063000261784</left_val>
- <right_val>0.8505910038948059</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 18 4 6 -1.</_>
- <_>9 19 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0367177687585354</threshold>
- <left_val>0.0162764303386211</left_val>
- <right_val>-0.8900070786476135</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 6 8 -1.</_>
- <_>3 0 3 4 2.</_>
- <_>6 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0612067282199860</threshold>
- <left_val>0.5483801960945129</left_val>
- <right_val>-0.0316251218318939</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 24 9 4 -1.</_>
- <_>8 24 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9046889394521713e-003</threshold>
- <left_val>0.0414838008582592</left_val>
- <right_val>-0.0860545337200165</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 20 8 6 -1.</_>
- <_>2 20 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0690031796693802</threshold>
- <left_val>-0.0265528801828623</left_val>
- <right_val>0.6064736843109131</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 22 6 6 -1.</_>
- <_>9 22 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0049421628937125e-004</threshold>
- <left_val>-0.1993429958820343</left_val>
- <right_val>0.0754432007670403</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 22 6 6 -1.</_>
- <_>3 22 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0348732396960258</threshold>
- <left_val>0.0390368700027466</left_val>
- <right_val>-0.4225127995014191</right_val></_></_></trees>
- <stage_threshold>-30.8383007049560550</stage_threshold>
- <parent>26</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 28 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 15 6 11 -1.</_>
- <_>3 15 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0544666089117527</threshold>
- <left_val>-0.1318282037973404</left_val>
- <right_val>0.2766044139862061</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 6 6 4 -1.</_>
- <_>4 8 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0218566507101059</threshold>
- <left_val>0.2547551095485687</left_val>
- <right_val>-0.0840456113219261</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 4 11 -1.</_>
- <_>2 16 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6198781132698059e-003</threshold>
- <left_val>0.0714893937110901</left_val>
- <right_val>-0.2630408108234406</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 16 6 6 -1.</_>
- <_>10 16 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8211596012115479e-003</threshold>
- <left_val>-0.1339671015739441</left_val>
- <right_val>0.1422293037176132</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 12 12 -1.</_>
- <_>4 20 4 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2325122952461243</threshold>
- <left_val>-0.3462874889373779</left_val>
- <right_val>0.0567674785852432</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 10 6 18 -1.</_>
- <_>8 16 6 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2847234904766083</threshold>
- <left_val>8.6089121177792549e-003</left_val>
- <right_val>-1.0012650489807129</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 12 5 16 -1.</_>
- <_>0 20 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0423035211861134</threshold>
- <left_val>-0.0916377529501915</left_val>
- <right_val>0.1909047067165375</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 12 3 16 -1.</_>
- <_>11 16 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0497819818556309</threshold>
- <left_val>0.0297099892050028</left_val>
- <right_val>-0.3596186935901642</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 13 14 12 -1.</_>
- <_>0 13 7 6 2.</_>
- <_>7 19 7 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0489243008196354</threshold>
- <left_val>-0.3838717937469482</left_val>
- <right_val>0.0551829896867275</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 10 16 -1.</_>
- <_>8 12 5 8 2.</_>
- <_>3 20 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7399803558364511e-005</threshold>
- <left_val>-0.1275880038738251</left_val>
- <right_val>0.0947935208678246</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 11 5 12 -1.</_>
- <_>3 17 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0244552902877331</threshold>
- <left_val>0.4691182971000671</left_val>
- <right_val>-0.0517820715904236</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 0 6 18 -1.</_>
- <_>8 6 2 6 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0252108201384544</threshold>
- <left_val>0.0440350882709026</left_val>
- <right_val>-0.1765304952859879</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 2 14 -1.</_>
- <_>6 11 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0475709103047848</threshold>
- <left_val>-0.5333272218704224</left_val>
- <right_val>0.0466939099133015</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 15 8 11 -1.</_>
- <_>5 15 4 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1404698044061661</threshold>
- <left_val>0.3279846012592316</left_val>
- <right_val>-0.0656077191233635</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 2 8 11 -1.</_>
- <_>5 2 4 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1093242987990379</threshold>
- <left_val>-0.5927674770355225</left_val>
- <right_val>0.0305432491004467</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 4 12 5 -1.</_>
- <_>5 4 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0985674709081650</threshold>
- <left_val>0.3675389885902405</left_val>
- <right_val>-0.0665684267878532</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 8 25 -1.</_>
- <_>5 3 4 25 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0768610984086990</threshold>
- <left_val>-0.1372255980968475</left_val>
- <right_val>0.1780606955289841</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 16 6 6 -1.</_>
- <_>10 16 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0210353601723909</threshold>
- <left_val>0.4363203942775726</left_val>
- <right_val>-0.0295247994363308</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 6 6 -1.</_>
- <_>2 16 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3428479433059692e-003</threshold>
- <left_val>-0.2442066967487335</left_val>
- <right_val>0.1196945980191231</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 13 3 14 -1.</_>
- <_>8 13 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0344331711530685</threshold>
- <left_val>0.2711027860641480</left_val>
- <right_val>-0.0759504362940788</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 4 12 -1.</_>
- <_>2 8 2 6 2.</_>
- <_>4 14 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7944410210475326e-003</threshold>
- <left_val>-0.1799702048301697</left_val>
- <right_val>0.1350875049829483</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 13 3 14 -1.</_>
- <_>8 13 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0966442674398422</threshold>
- <left_val>-0.7668998837471008</left_val>
- <right_val>0.0154358698055148</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 3 14 -1.</_>
- <_>5 13 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5092919822782278e-003</threshold>
- <left_val>-0.1250617951154709</left_val>
- <right_val>0.1881415992975235</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 3 9 6 -1.</_>
- <_>5 5 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2511319257318974e-003</threshold>
- <left_val>0.0782688185572624</left_val>
- <right_val>-0.0726367533206940</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 6 4 -1.</_>
- <_>3 10 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4670952017186210e-006</threshold>
- <left_val>0.0769332274794579</left_val>
- <right_val>-0.2614870965480804</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 3 12 -1.</_>
- <_>11 7 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0265739597380161</threshold>
- <left_val>0.0225346796214581</left_val>
- <right_val>-0.1629942953586578</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 8 8 3 -1.</_>
- <_>4 8 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0170864704996347</threshold>
- <left_val>-0.0582328289747238</left_val>
- <right_val>0.3609594106674194</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 13 12 8 -1.</_>
- <_>7 13 6 4 2.</_>
- <_>1 17 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0147018842399120e-003</threshold>
- <left_val>0.1281758993864059</left_val>
- <right_val>-0.1823015958070755</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 18 10 10 -1.</_>
- <_>7 18 5 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4206426292657852e-003</threshold>
- <left_val>0.0898257866501808</left_val>
- <right_val>-0.2687729895114899</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 4 6 -1.</_>
- <_>5 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5143040157854557e-004</threshold>
- <left_val>0.0882954075932503</left_val>
- <right_val>-0.2330484986305237</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 13 3 -1.</_>
- <_>0 1 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0106879696249962</threshold>
- <left_val>0.3061277866363525</left_val>
- <right_val>-0.0657603666186333</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 6 8 -1.</_>
- <_>11 1 3 4 2.</_>
- <_>8 5 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0750016868114471</threshold>
- <left_val>4.3955240398645401e-003</left_val>
- <right_val>-0.7509499192237854</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 1 6 8 -1.</_>
- <_>0 1 3 4 2.</_>
- <_>3 5 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0508490204811096</threshold>
- <left_val>0.0205245595425367</left_val>
- <right_val>-0.8340644240379334</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 18 2 7 -1.</_>
- <_>7 18 1 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0235556308180094</threshold>
- <left_val>3.6320169456303120e-003</left_val>
- <right_val>-0.8832278251647949</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 18 7 2 -1.</_>
- <_>7 18 7 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0168274808675051</threshold>
- <left_val>-0.6569777131080627</left_val>
- <right_val>0.0231386590749025</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 22 9 4 -1.</_>
- <_>7 22 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0199773497879505</threshold>
- <left_val>-0.0238473303616047</left_val>
- <right_val>0.3263647854328156</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 4 5 6 -1.</_>
- <_>0 7 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0313975289463997</threshold>
- <left_val>-0.0363436117768288</left_val>
- <right_val>0.4479264020919800</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>11 3 3 12 -1.</_>
- <_>11 7 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0932827591896057</threshold>
- <left_val>-0.5294207930564880</left_val>
- <right_val>6.3824458047747612e-003</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 3 12 -1.</_>
- <_>0 7 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7012612018734217e-004</threshold>
- <left_val>0.1542045027017593</left_val>
- <right_val>-0.1575141996145248</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 0 6 8 -1.</_>
- <_>8 0 3 4 2.</_>
- <_>5 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0468914918601513</threshold>
- <left_val>0.0118022998794913</left_val>
- <right_val>-0.7309272885322571</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 6 8 -1.</_>
- <_>3 0 3 4 2.</_>
- <_>6 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4607138950377703e-003</threshold>
- <left_val>0.1156596019864082</left_val>
- <right_val>-0.1756841987371445</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 3 2 12 -1.</_>
- <_>8 3 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0334934182465076</threshold>
- <left_val>-0.6804947257041931</left_val>
- <right_val>5.1433579064905643e-003</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 6 9 8 -1.</_>
- <_>0 8 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0557939186692238</threshold>
- <left_val>-0.5390889048576355</left_val>
- <right_val>0.0320088304579258</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 2 6 4 -1.</_>
- <_>4 4 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1339478231966496e-003</threshold>
- <left_val>-0.0661146268248558</left_val>
- <right_val>0.3176003098487854</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 18 4 10 -1.</_>
- <_>3 18 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0386429280042648e-003</threshold>
- <left_val>0.0814627185463905</left_val>
- <right_val>-0.2429192066192627</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 18 4 6 -1.</_>
- <_>9 18 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1149981077760458e-004</threshold>
- <left_val>0.0467233918607235</left_val>
- <right_val>-0.0845426768064499</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 12 3 -1.</_>
- <_>1 3 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8326110439375043e-003</threshold>
- <left_val>-0.1283030062913895</left_val>
- <right_val>0.1512715071439743</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 18 4 6 -1.</_>
- <_>9 18 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0258788801729679</threshold>
- <left_val>-0.2116069942712784</left_val>
- <right_val>0.0298112593591213</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 14 3 -1.</_>
- <_>0 3 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3985199620947242e-003</threshold>
- <left_val>0.1980108022689819</left_val>
- <right_val>-0.1036868989467621</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 19 4 6 -1.</_>
- <_>9 19 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4663188960403204e-003</threshold>
- <left_val>0.0245548691600561</left_val>
- <right_val>-0.1083042994141579</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 19 4 6 -1.</_>
- <_>3 19 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3155230553820729e-003</threshold>
- <left_val>-0.2198446989059448</left_val>
- <right_val>0.0939659774303436</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 3 15 -1.</_>
- <_>8 12 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1056244000792503</threshold>
- <left_val>-0.7974779009819031</left_val>
- <right_val>8.9689819142222404e-003</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 20 4 4 -1.</_>
- <_>6 21 4 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.0508160125464201e-003</threshold>
- <left_val>0.1326649039983749</left_val>
- <right_val>-0.1373468041419983</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 3 4 6 -1.</_>
- <_>9 3 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0298572797328234</threshold>
- <left_val>9.6069881692528725e-003</left_val>
- <right_val>-0.3011654019355774</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 3 4 6 -1.</_>
- <_>3 3 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0309721194207668</threshold>
- <left_val>0.0300913508981466</left_val>
- <right_val>-0.5727983117103577</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 7 3 15 -1.</_>
- <_>8 12 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1077274978160858</threshold>
- <left_val>-1.1804240057244897e-003</left_val>
- <right_val>-0.9998757839202881</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 3 15 -1.</_>
- <_>3 12 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0515018813312054</threshold>
- <left_val>0.2718138098716736</left_val>
- <right_val>-0.0681615024805069</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 12 2 12 -1.</_>
- <_>9 18 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0252882894128561</threshold>
- <left_val>0.4506731033325195</left_val>
- <right_val>-0.0165209807455540</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 12 2 12 -1.</_>
- <_>3 18 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2859618552029133e-003</threshold>
- <left_val>0.3721388876438141</left_val>
- <right_val>-0.0497617386281490</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 0 5 6 -1.</_>
- <_>8 3 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0231944601982832</threshold>
- <left_val>-0.2069765031337738</left_val>
- <right_val>0.0410712100565434</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 0 5 6 -1.</_>
- <_>1 3 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0168785303831100</threshold>
- <left_val>0.0564081296324730</left_val>
- <right_val>-0.3761448860168457</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 8 8 -1.</_>
- <_>3 8 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0296011697500944</threshold>
- <left_val>0.2720799148082733</left_val>
- <right_val>-0.0730900764465332</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 6 14 -1.</_>
- <_>4 4 2 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1079726964235306</threshold>
- <left_val>-0.4919354021549225</left_val>
- <right_val>0.0361185707151890</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 7 16 -1.</_>
- <_>5 18 7 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2531785070896149</threshold>
- <left_val>8.8794529438018799e-003</left_val>
- <right_val>-0.3474639058113098</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 6 10 -1.</_>
- <_>6 10 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0759278684854507</threshold>
- <left_val>-0.5256810188293457</left_val>
- <right_val>0.0300291497260332</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 10 4 12 -1.</_>
- <_>5 13 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5496079362928867e-003</threshold>
- <left_val>0.0618173182010651</left_val>
- <right_val>-0.2345004975795746</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 6 18 -1.</_>
- <_>4 6 2 6 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0104194702580571</threshold>
- <left_val>0.0954701825976372</left_val>
- <right_val>-0.1976493000984192</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 12 4 -1.</_>
- <_>1 12 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0162421204149723</threshold>
- <left_val>0.3585678040981293</left_val>
- <right_val>-0.0525104999542236</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 15 5 2 -1.</_>
- <_>7 15 5 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.4503370039165020e-003</threshold>
- <left_val>-0.1800349056720734</left_val>
- <right_val>0.0952083319425583</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 24 6 4 -1.</_>
- <_>4 24 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0196962095797062</threshold>
- <left_val>0.0375376604497433</left_val>
- <right_val>-0.4806590974330902</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 18 5 4 -1.</_>
- <_>4 19 5 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.4964820370078087e-003</threshold>
- <left_val>-0.0971873775124550</left_val>
- <right_val>0.1756905019283295</right_val></_></_></trees>
- <stage_threshold>-30.6401996612548830</stage_threshold>
- <parent>27</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 29 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 1 6 25 -1.</_>
- <_>6 1 3 25 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1401122957468033</threshold>
- <left_val>0.3578777015209198</left_val>
- <right_val>-0.1212553009390831</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 13 2 12 -1.</_>
- <_>6 13 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0100089497864246</threshold>
- <left_val>0.2633092999458313</left_val>
- <right_val>-0.0890080183744431</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 2 13 -1.</_>
- <_>7 4 1 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0113941803574562</threshold>
- <left_val>0.4322882890701294</left_val>
- <right_val>-0.0501591786742210</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 2 6 19 -1.</_>
- <_>10 2 2 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2313435971736908</threshold>
- <left_val>6.3841762021183968e-003</left_val>
- <right_val>-0.7029209733009338</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 2 6 19 -1.</_>
- <_>2 2 2 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1264661997556686</threshold>
- <left_val>0.0427680015563965</left_val>
- <right_val>-0.4391900002956390</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 1 4 13 -1.</_>
- <_>10 1 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0466162487864494</threshold>
- <left_val>0.0192505903542042</left_val>
- <right_val>0.5449979901313782</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 1 4 13 -1.</_>
- <_>2 1 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0220378004014492</threshold>
- <left_val>-0.0851087495684624</left_val>
- <right_val>0.3384878039360046</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 8 3 -1.</_>
- <_>3 3 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0313455611467361</threshold>
- <left_val>0.0226909406483173</left_val>
- <right_val>-0.5167118906974793</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 5 10 18 -1.</_>
- <_>2 11 10 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2114063948392868</threshold>
- <left_val>0.2941249012947083</left_val>
- <right_val>-0.0464795604348183</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 8 9 12 -1.</_>
- <_>6 12 3 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0663341134786606</threshold>
- <left_val>-0.1344404965639114</left_val>
- <right_val>0.1284202039241791</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 6 4 -1.</_>
- <_>4 6 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0407386682927608</threshold>
- <left_val>0.0234058108180761</left_val>
- <right_val>-0.8023356199264526</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 10 8 -1.</_>
- <_>9 8 5 4 2.</_>
- <_>4 12 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0414708703756332</threshold>
- <left_val>0.1462056934833527</left_val>
- <right_val>-0.0195902101695538</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 8 6 6 -1.</_>
- <_>4 8 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0184567905962467</threshold>
- <left_val>-0.0361854694783688</left_val>
- <right_val>0.5123826861381531</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 6 10 -1.</_>
- <_>7 10 3 5 2.</_>
- <_>4 15 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7538509350270033e-003</threshold>
- <left_val>-0.1558776050806046</left_val>
- <right_val>0.1031239032745361</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 8 14 -1.</_>
- <_>3 9 4 7 2.</_>
- <_>7 16 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8798980638384819e-003</threshold>
- <left_val>-0.1222577020525932</left_val>
- <right_val>0.1755176931619644</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 7 6 20 -1.</_>
- <_>7 7 3 10 2.</_>
- <_>4 17 3 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0327623412013054</threshold>
- <left_val>-0.4716975986957550</left_val>
- <right_val>0.0303803198039532</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 0 6 8 -1.</_>
- <_>3 0 3 4 2.</_>
- <_>6 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0390222109854221</threshold>
- <left_val>0.3510676026344299</left_val>
- <right_val>-0.0661192610859871</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 5 4 6 -1.</_>
- <_>7 5 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0446747988462448</threshold>
- <left_val>-0.3995831012725830</left_val>
- <right_val>0.0210663899779320</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 8 8 -1.</_>
- <_>3 7 4 4 2.</_>
- <_>7 11 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3343027830123901e-003</threshold>
- <left_val>0.0791373774409294</left_val>
- <right_val>-0.2117677927017212</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 6 4 -1.</_>
- <_>5 11 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0155211696401238</threshold>
- <left_val>0.0344389304518700</left_val>
- <right_val>-0.5720204710960388</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 9 4 9 -1.</_>
- <_>0 12 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.0842437455430627e-004</threshold>
- <left_val>0.1195174977183342</left_val>
- <right_val>-0.1432583034038544</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 6 4 12 -1.</_>
- <_>8 10 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0277547407895327</threshold>
- <left_val>-0.0324368886649609</left_val>
- <right_val>0.3074922859668732</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 7 10 6 -1.</_>
- <_>1 9 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4786630421876907e-003</threshold>
- <left_val>0.1568875014781952</left_val>
- <right_val>-0.1564995050430298</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 7 14 12 -1.</_>
- <_>0 10 14 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0278409793972969</threshold>
- <left_val>-0.1293258070945740</left_val>
- <right_val>0.1540801972150803</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 6 4 -1.</_>
- <_>3 11 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0033390319440514e-004</threshold>
- <left_val>0.1059113964438438</left_val>
- <right_val>-0.2382947951555252</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 4 8 -1.</_>
- <_>8 1 2 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0633525326848030</threshold>
- <left_val>-0.0350577011704445</left_val>
- <right_val>0.1111909002065659</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 4 12 -1.</_>
- <_>2 10 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1063425987958908</threshold>
- <left_val>-0.6793817877769470</left_val>
- <right_val>0.0274659004062414</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 12 4 -1.</_>
- <_>8 16 6 2 2.</_>
- <_>2 18 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9035820150747895e-004</threshold>
- <left_val>-0.1190816015005112</left_val>
- <right_val>0.1133468970656395</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 20 4 4 -1.</_>
- <_>6 21 4 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0135642401874065</threshold>
- <left_val>0.2750580012798309</left_val>
- <right_val>-0.0683159828186035</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 16 2 12 -1.</_>
- <_>9 16 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0210962295532227</threshold>
- <left_val>-0.0109879495576024</left_val>
- <right_val>0.3993543088436127</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 18 5 4 -1.</_>
- <_>4 19 5 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.4880920536816120e-003</threshold>
- <left_val>-0.2184953987598419</left_val>
- <right_val>0.0892938077449799</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 4 8 -1.</_>
- <_>8 1 2 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0123706702142954</threshold>
- <left_val>-0.0956454500555992</left_val>
- <right_val>0.0566339604556561</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 6 9 7 -1.</_>
- <_>5 6 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1203635036945343</threshold>
- <left_val>-0.5317410230636597</left_val>
- <right_val>0.0357750803232193</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 6 8 12 -1.</_>
- <_>3 9 8 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0671380609273911</threshold>
- <left_val>0.2145684063434601</left_val>
- <right_val>-0.0873891264200211</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 0 9 21 -1.</_>
- <_>3 7 3 7 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1216192021965981</threshold>
- <left_val>-0.1816080957651138</left_val>
- <right_val>0.1457355022430420</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 4 8 -1.</_>
- <_>8 1 2 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0204794593155384</threshold>
- <left_val>-0.0557153411209583</left_val>
- <right_val>0.0611892193555832</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 1 5 18 -1.</_>
- <_>2 10 5 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1847079042345285e-003</threshold>
- <left_val>-0.0952582135796547</left_val>
- <right_val>0.2059109061956406</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 6 7 -1.</_>
- <_>8 1 3 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.0952740237116814e-003</threshold>
- <left_val>-0.1186736002564430</left_val>
- <right_val>0.0466964617371559</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 2 16 -1.</_>
- <_>1 3 1 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5035728942602873e-003</threshold>
- <left_val>0.2332196980714798</left_val>
- <right_val>-0.0755375996232033</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 18 4 8 -1.</_>
- <_>9 18 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0104670198634267</threshold>
- <left_val>-0.1244800984859467</left_val>
- <right_val>0.0505952611565590</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 18 12 9 -1.</_>
- <_>3 18 6 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0150208296254277</threshold>
- <left_val>0.0919919088482857</left_val>
- <right_val>-0.2207739949226379</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 2 12 3 -1.</_>
- <_>5 2 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0444990508258343</threshold>
- <left_val>0.0341018997132778</left_val>
- <right_val>-0.5342277288436890</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 7 6 -1.</_>
- <_>6 1 7 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.1879837671294808e-004</threshold>
- <left_val>-0.1919344067573547</left_val>
- <right_val>0.1017773002386093</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 9 3 13 -1.</_>
- <_>7 9 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0297935493290424</threshold>
- <left_val>0.4144274890422821</left_val>
- <right_val>-0.0202981494367123</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 6 6 -1.</_>
- <_>6 1 6 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0166143290698528</threshold>
- <left_val>0.1045709997415543</left_val>
- <right_val>-0.1835236996412277</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 4 4 11 -1.</_>
- <_>6 4 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0225107893347740</threshold>
- <left_val>0.1891123056411743</left_val>
- <right_val>-0.0338670387864113</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 4 4 11 -1.</_>
- <_>6 4 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0204072501510382</threshold>
- <left_val>-0.0585243701934814</left_val>
- <right_val>0.3596762120723724</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 1 4 8 -1.</_>
- <_>8 1 2 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.0294319149106741e-003</threshold>
- <left_val>-0.1403163969516754</left_val>
- <right_val>0.0548497810959816</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 20 4 8 -1.</_>
- <_>3 20 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8518280275166035e-004</threshold>
- <left_val>0.0955235883593559</left_val>
- <right_val>-0.1965035945177078</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 22 4 6 -1.</_>
- <_>9 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0177563391625881</threshold>
- <left_val>0.0161958690732718</left_val>
- <right_val>-0.5853430032730103</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 22 4 6 -1.</_>
- <_>3 22 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2687620259821415e-003</threshold>
- <left_val>-0.3080259859561920</left_val>
- <right_val>0.0655681118369102</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 3 22 -1.</_>
- <_>10 0 1 22 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4140530042350292e-003</threshold>
- <left_val>-0.0825024172663689</left_val>
- <right_val>0.0998902693390846</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 21 8 6 -1.</_>
- <_>5 21 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3527207821607590e-003</threshold>
- <left_val>-0.0351637788116932</left_val>
- <right_val>0.5423762202262878</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 11 3 15 -1.</_>
- <_>7 11 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0045090932399035e-003</threshold>
- <left_val>-0.1008172035217285</left_val>
- <right_val>0.0969350412487984</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 1 8 4 -1.</_>
- <_>6 1 8 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.9825910031795502e-003</threshold>
- <left_val>-0.1601238995790482</left_val>
- <right_val>0.1134850978851318</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 12 4 -1.</_>
- <_>8 16 6 2 2.</_>
- <_>2 18 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0459630116820335</threshold>
- <left_val>6.1929170042276382e-003</left_val>
- <right_val>-0.8855175971984863</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 16 12 4 -1.</_>
- <_>0 16 6 2 2.</_>
- <_>6 18 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0370623916387558</threshold>
- <left_val>0.0201282501220703</left_val>
- <right_val>-0.8093351125717163</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 10 3 12 -1.</_>
- <_>6 14 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0415228083729744</threshold>
- <left_val>0.2059791982173920</left_val>
- <right_val>-0.0319279395043850</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 13 6 14 -1.</_>
- <_>4 20 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1652186065912247</threshold>
- <left_val>0.0255248397588730</left_val>
- <right_val>-0.6295161247253418</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 9 9 15 -1.</_>
- <_>6 14 3 5 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2318888008594513</threshold>
- <left_val>0.1395397931337357</left_val>
- <right_val>-0.0616117902100086</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 10 9 4 -1.</_>
- <_>7 13 3 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0281500704586506</threshold>
- <left_val>-0.1367637068033218</left_val>
- <right_val>0.1167756989598274</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 7 8 7 -1.</_>
- <_>3 7 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0499450620263815e-003</threshold>
- <left_val>-0.1585503965616226</left_val>
- <right_val>0.1351170986890793</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 4 6 -1.</_>
- <_>6 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2636490282602608e-004</threshold>
- <left_val>-0.1502434015274048</left_val>
- <right_val>0.1373908966779709</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 6 11 -1.</_>
- <_>6 9 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4286638945341110e-003</threshold>
- <left_val>0.0792474597692490</left_val>
- <right_val>-0.2595944106578827</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 11 4 12 -1.</_>
- <_>1 15 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0218735896050930</threshold>
- <left_val>0.3559050858020783</left_val>
- <right_val>-0.0618359185755253</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>9 0 2 12 -1.</_>
- <_>9 0 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8419788256287575e-003</threshold>
- <left_val>-0.1021912023425102</left_val>
- <right_val>0.0399971306324005</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 4 4 16 -1.</_>
- <_>2 4 2 8 2.</_>
- <_>4 12 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6236099656671286e-003</threshold>
- <left_val>0.1212999001145363</left_val>
- <right_val>-0.1486115008592606</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 8 5 14 -1.</_>
- <_>5 15 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1459041982889175</threshold>
- <left_val>-0.0368846505880356</left_val>
- <right_val>0.4148491919040680</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 3 22 -1.</_>
- <_>3 0 1 22 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.6298510432243347e-003</threshold>
- <left_val>0.2552245855331421</left_val>
- <right_val>-0.0698716267943382</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 25 8 3 -1.</_>
- <_>6 25 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0391534715890884</threshold>
- <left_val>-0.8553311824798584</left_val>
- <right_val>0.0146392397582531</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 8 22 -1.</_>
- <_>1 17 8 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3848269879817963</threshold>
- <left_val>0.0173611193895340</left_val>
- <right_val>-0.7979055047035217</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 15 6 8 -1.</_>
- <_>7 15 3 4 2.</_>
- <_>4 19 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3598138513043523e-004</threshold>
- <left_val>0.1151826977729797</left_val>
- <right_val>-0.1421640962362289</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 13 4 14 -1.</_>
- <_>5 13 2 7 2.</_>
- <_>7 20 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9026381932199001e-003</threshold>
- <left_val>0.0705236569046974</left_val>
- <right_val>-0.2303119003772736</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 16 10 12 -1.</_>
- <_>7 16 5 6 2.</_>
- <_>2 22 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1841119703603908e-004</threshold>
- <left_val>0.1040178984403610</left_val>
- <right_val>-0.1712667942047119</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 15 8 3 -1.</_>
- <_>4 15 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0819626599550247</threshold>
- <left_val>0.0277990996837616</left_val>
- <right_val>-0.5833172202110291</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 0 12 3 -1.</_>
- <_>2 1 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9551688395440578e-004</threshold>
- <left_val>0.1256852000951767</left_val>
- <right_val>-0.1031771972775459</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 9 22 -1.</_>
- <_>3 5 3 22 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1558894068002701</threshold>
- <left_val>0.6289020180702210</left_val>
- <right_val>-0.0251919794827700</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 9 6 4 -1.</_>
- <_>4 11 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0134563101455569</threshold>
- <left_val>-0.3247169852256775</left_val>
- <right_val>0.0554869212210178</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 14 6 2 -1.</_>
- <_>4 14 6 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0215071998536587</threshold>
- <left_val>0.2881917953491211</left_val>
- <right_val>-0.0611761398613453</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>8 12 6 4 -1.</_>
- <_>8 12 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0190420690923929</threshold>
- <left_val>-0.0605529099702835</left_val>
- <right_val>0.0896290615200996</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 16 8 4 -1.</_>
- <_>4 17 8 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.1205362696200609e-004</threshold>
- <left_val>0.1238545998930931</left_val>
- <right_val>-0.1358487010002136</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 15 4 6 -1.</_>
- <_>5 15 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0382026284933090</threshold>
- <left_val>0.0192184206098318</left_val>
- <right_val>-0.8448883295059204</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 9 2 14 -1.</_>
- <_>5 16 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0517873913049698</threshold>
- <left_val>-0.0548306591808796</left_val>
- <right_val>0.3335298001766205</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 6 6 12 -1.</_>
- <_>6 10 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1386034935712814</threshold>
- <left_val>-0.2716459929943085</left_val>
- <right_val>0.0106801996007562</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 20 12 6 -1.</_>
- <_>1 20 6 3 2.</_>
- <_>7 23 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0393259599804878</threshold>
- <left_val>-0.7604343295097351</left_val>
- <right_val>0.0193206705152988</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>4 8 6 4 -1.</_>
- <_>4 10 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1157010449096560e-003</threshold>
- <left_val>0.0694785192608833</left_val>
- <right_val>-0.2032717019319534</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>1 6 9 6 -1.</_>
- <_>1 8 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2068599723279476e-003</threshold>
- <left_val>0.1600721925497055</left_val>
- <right_val>-0.1098235026001930</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>5 6 6 4 -1.</_>
- <_>5 8 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7919029127806425e-003</threshold>
- <left_val>-0.0838006436824799</left_val>
- <right_val>0.2515478134155273</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>3 3 8 6 -1.</_>
- <_>3 3 4 3 2.</_>
- <_>7 6 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0314305908977985</threshold>
- <left_val>-0.5059031248092651</left_val>
- <right_val>0.0376673787832260</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 23 6 5 -1.</_>
- <_>6 23 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3412651866674423e-003</threshold>
- <left_val>0.0585919693112373</left_val>
- <right_val>-0.1727126985788345</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 3 12 4 -1.</_>
- <_>0 3 6 2 2.</_>
- <_>6 5 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6401407346129417e-004</threshold>
- <left_val>0.1013183966279030</left_val>
- <right_val>-0.1673755049705505</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>7 4 6 18 -1.</_>
- <_>7 10 6 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0171399600803852</threshold>
- <left_val>0.0496194511651993</left_val>
- <right_val>-0.1181275025010109</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>6 12 4 6 -1.</_>
- <_>6 12 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0238684900105000</threshold>
- <left_val>-0.0958755090832710</left_val>
- <right_val>0.1840431988239288</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>2 15 12 6 -1.</_>
- <_>5 15 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0874088108539581</threshold>
- <left_val>0.1414463073015213</left_val>
- <right_val>-0.0577138289809227</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>0 5 4 12 -1.</_>
- <_>0 5 2 6 2.</_>
- <_>2 11 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0391700901091099</threshold>
- <left_val>-0.6103624105453491</left_val>
- <right_val>0.0223081093281507</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>10 4 4 16 -1.</_>
- <_>12 4 2 8 2.</_>
- <_>10 12 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0533615797758102</threshold>
- <left_val>0.0150276403874159</left_val>
- <right_val>-0.6540914177894592</right_val></_></_></trees>
- <stage_threshold>-30.8048992156982420</stage_threshold>
- <parent>28</parent>
- <next>-1</next></_></stages></haarcascade_fullbody>
- </opencv_storage>
|