1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433 |
- ///////////////////////////////////////////////////////////////////////////
- //
- // Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas
- // Digital Ltd. LLC
- //
- // All rights reserved.
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following disclaimer
- // in the documentation and/or other materials provided with the
- // distribution.
- // * Neither the name of Industrial Light & Magic nor the names of
- // its contributors may be used to endorse or promote products derived
- // from this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- //
- ///////////////////////////////////////////////////////////////////////////
- #ifndef INCLUDED_IMATHMATRIX_H
- #define INCLUDED_IMATHMATRIX_H
- //----------------------------------------------------------------
- //
- // 2D (3x3) and 3D (4x4) transformation matrix templates.
- //
- //----------------------------------------------------------------
- #include "ImathPlatform.h"
- #include "ImathFun.h"
- #include "ImathExc.h"
- #include "ImathVec.h"
- #include "ImathShear.h"
- #include "ImathNamespace.h"
- #include <cstring>
- #include <iostream>
- #include <iomanip>
- #include <string.h>
- #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
- // suppress exception specification warnings
- #pragma warning(disable:4290)
- #endif
- IMATH_INTERNAL_NAMESPACE_HEADER_ENTER
- enum Uninitialized {UNINITIALIZED};
- template <class T> class Matrix33
- {
- public:
- //-------------------
- // Access to elements
- //-------------------
- T x[3][3];
- T * operator [] (int i);
- const T * operator [] (int i) const;
- //-------------
- // Constructors
- //-------------
- Matrix33 (Uninitialized) {}
- Matrix33 ();
- // 1 0 0
- // 0 1 0
- // 0 0 1
- Matrix33 (T a);
- // a a a
- // a a a
- // a a a
- Matrix33 (const T a[3][3]);
- // a[0][0] a[0][1] a[0][2]
- // a[1][0] a[1][1] a[1][2]
- // a[2][0] a[2][1] a[2][2]
- Matrix33 (T a, T b, T c, T d, T e, T f, T g, T h, T i);
- // a b c
- // d e f
- // g h i
- //--------------------------------
- // Copy constructor and assignment
- //--------------------------------
- Matrix33 (const Matrix33 &v);
- template <class S> explicit Matrix33 (const Matrix33<S> &v);
- const Matrix33 & operator = (const Matrix33 &v);
- const Matrix33 & operator = (T a);
- //----------------------
- // Compatibility with Sb
- //----------------------
-
- T * getValue ();
- const T * getValue () const;
- template <class S>
- void getValue (Matrix33<S> &v) const;
- template <class S>
- Matrix33 & setValue (const Matrix33<S> &v);
- template <class S>
- Matrix33 & setTheMatrix (const Matrix33<S> &v);
- //---------
- // Identity
- //---------
- void makeIdentity();
- //---------
- // Equality
- //---------
- bool operator == (const Matrix33 &v) const;
- bool operator != (const Matrix33 &v) const;
- //-----------------------------------------------------------------------
- // Compare two matrices and test if they are "approximately equal":
- //
- // equalWithAbsError (m, e)
- //
- // Returns true if the coefficients of this and m are the same with
- // an absolute error of no more than e, i.e., for all i, j
- //
- // abs (this[i][j] - m[i][j]) <= e
- //
- // equalWithRelError (m, e)
- //
- // Returns true if the coefficients of this and m are the same with
- // a relative error of no more than e, i.e., for all i, j
- //
- // abs (this[i] - v[i][j]) <= e * abs (this[i][j])
- //-----------------------------------------------------------------------
- bool equalWithAbsError (const Matrix33<T> &v, T e) const;
- bool equalWithRelError (const Matrix33<T> &v, T e) const;
- //------------------------
- // Component-wise addition
- //------------------------
- const Matrix33 & operator += (const Matrix33 &v);
- const Matrix33 & operator += (T a);
- Matrix33 operator + (const Matrix33 &v) const;
- //---------------------------
- // Component-wise subtraction
- //---------------------------
- const Matrix33 & operator -= (const Matrix33 &v);
- const Matrix33 & operator -= (T a);
- Matrix33 operator - (const Matrix33 &v) const;
- //------------------------------------
- // Component-wise multiplication by -1
- //------------------------------------
- Matrix33 operator - () const;
- const Matrix33 & negate ();
- //------------------------------
- // Component-wise multiplication
- //------------------------------
- const Matrix33 & operator *= (T a);
- Matrix33 operator * (T a) const;
- //-----------------------------------
- // Matrix-times-matrix multiplication
- //-----------------------------------
- const Matrix33 & operator *= (const Matrix33 &v);
- Matrix33 operator * (const Matrix33 &v) const;
- //-----------------------------------------------------------------
- // Vector-times-matrix multiplication; see also the "operator *"
- // functions defined below.
- //
- // m.multVecMatrix(src,dst) implements a homogeneous transformation
- // by computing Vec3 (src.x, src.y, 1) * m and dividing by the
- // result's third element.
- //
- // m.multDirMatrix(src,dst) multiplies src by the upper left 2x2
- // submatrix, ignoring the rest of matrix m.
- //-----------------------------------------------------------------
- template <class S>
- void multVecMatrix(const Vec2<S> &src, Vec2<S> &dst) const;
- template <class S>
- void multDirMatrix(const Vec2<S> &src, Vec2<S> &dst) const;
- //------------------------
- // Component-wise division
- //------------------------
- const Matrix33 & operator /= (T a);
- Matrix33 operator / (T a) const;
- //------------------
- // Transposed matrix
- //------------------
- const Matrix33 & transpose ();
- Matrix33 transposed () const;
- //------------------------------------------------------------
- // Inverse matrix: If singExc is false, inverting a singular
- // matrix produces an identity matrix. If singExc is true,
- // inverting a singular matrix throws a SingMatrixExc.
- //
- // inverse() and invert() invert matrices using determinants;
- // gjInverse() and gjInvert() use the Gauss-Jordan method.
- //
- // inverse() and invert() are significantly faster than
- // gjInverse() and gjInvert(), but the results may be slightly
- // less accurate.
- //
- //------------------------------------------------------------
- const Matrix33 & invert (bool singExc = false);
- Matrix33<T> inverse (bool singExc = false) const;
- const Matrix33 & gjInvert (bool singExc = false);
- Matrix33<T> gjInverse (bool singExc = false) const;
- //------------------------------------------------
- // Calculate the matrix minor of the (r,c) element
- //------------------------------------------------
- T minorOf (const int r, const int c) const;
- //---------------------------------------------------
- // Build a minor using the specified rows and columns
- //---------------------------------------------------
- T fastMinor (const int r0, const int r1,
- const int c0, const int c1) const;
- //------------
- // Determinant
- //------------
- T determinant() const;
- //-----------------------------------------
- // Set matrix to rotation by r (in radians)
- //-----------------------------------------
- template <class S>
- const Matrix33 & setRotation (S r);
- //-----------------------------
- // Rotate the given matrix by r
- //-----------------------------
- template <class S>
- const Matrix33 & rotate (S r);
- //--------------------------------------------
- // Set matrix to scale by given uniform factor
- //--------------------------------------------
- const Matrix33 & setScale (T s);
- //------------------------------------
- // Set matrix to scale by given vector
- //------------------------------------
- template <class S>
- const Matrix33 & setScale (const Vec2<S> &s);
- //----------------------
- // Scale the matrix by s
- //----------------------
- template <class S>
- const Matrix33 & scale (const Vec2<S> &s);
- //------------------------------------------
- // Set matrix to translation by given vector
- //------------------------------------------
- template <class S>
- const Matrix33 & setTranslation (const Vec2<S> &t);
- //-----------------------------
- // Return translation component
- //-----------------------------
- Vec2<T> translation () const;
- //--------------------------
- // Translate the matrix by t
- //--------------------------
- template <class S>
- const Matrix33 & translate (const Vec2<S> &t);
- //-----------------------------------------------------------
- // Set matrix to shear x for each y coord. by given factor xy
- //-----------------------------------------------------------
- template <class S>
- const Matrix33 & setShear (const S &h);
- //-------------------------------------------------------------
- // Set matrix to shear x for each y coord. by given factor h[0]
- // and to shear y for each x coord. by given factor h[1]
- //-------------------------------------------------------------
- template <class S>
- const Matrix33 & setShear (const Vec2<S> &h);
- //-----------------------------------------------------------
- // Shear the matrix in x for each y coord. by given factor xy
- //-----------------------------------------------------------
- template <class S>
- const Matrix33 & shear (const S &xy);
- //-----------------------------------------------------------
- // Shear the matrix in x for each y coord. by given factor xy
- // and shear y for each x coord. by given factor yx
- //-----------------------------------------------------------
- template <class S>
- const Matrix33 & shear (const Vec2<S> &h);
- //--------------------------------------------------------
- // Number of the row and column dimensions, since
- // Matrix33 is a square matrix.
- //--------------------------------------------------------
- static unsigned int dimensions() {return 3;}
- //-------------------------------------------------
- // Limitations of type T (see also class limits<T>)
- //-------------------------------------------------
- static T baseTypeMin() {return limits<T>::min();}
- static T baseTypeMax() {return limits<T>::max();}
- static T baseTypeSmallest() {return limits<T>::smallest();}
- static T baseTypeEpsilon() {return limits<T>::epsilon();}
- typedef T BaseType;
- typedef Vec3<T> BaseVecType;
- private:
- template <typename R, typename S>
- struct isSameType
- {
- enum {value = 0};
- };
- template <typename R>
- struct isSameType<R, R>
- {
- enum {value = 1};
- };
- };
- template <class T> class Matrix44
- {
- public:
- //-------------------
- // Access to elements
- //-------------------
- T x[4][4];
- T * operator [] (int i);
- const T * operator [] (int i) const;
- //-------------
- // Constructors
- //-------------
- Matrix44 (Uninitialized) {}
- Matrix44 ();
- // 1 0 0 0
- // 0 1 0 0
- // 0 0 1 0
- // 0 0 0 1
- Matrix44 (T a);
- // a a a a
- // a a a a
- // a a a a
- // a a a a
- Matrix44 (const T a[4][4]) ;
- // a[0][0] a[0][1] a[0][2] a[0][3]
- // a[1][0] a[1][1] a[1][2] a[1][3]
- // a[2][0] a[2][1] a[2][2] a[2][3]
- // a[3][0] a[3][1] a[3][2] a[3][3]
- Matrix44 (T a, T b, T c, T d, T e, T f, T g, T h,
- T i, T j, T k, T l, T m, T n, T o, T p);
- // a b c d
- // e f g h
- // i j k l
- // m n o p
- Matrix44 (Matrix33<T> r, Vec3<T> t);
- // r r r 0
- // r r r 0
- // r r r 0
- // t t t 1
- //--------------------------------
- // Copy constructor and assignment
- //--------------------------------
- Matrix44 (const Matrix44 &v);
- template <class S> explicit Matrix44 (const Matrix44<S> &v);
- const Matrix44 & operator = (const Matrix44 &v);
- const Matrix44 & operator = (T a);
- //----------------------
- // Compatibility with Sb
- //----------------------
-
- T * getValue ();
- const T * getValue () const;
- template <class S>
- void getValue (Matrix44<S> &v) const;
- template <class S>
- Matrix44 & setValue (const Matrix44<S> &v);
- template <class S>
- Matrix44 & setTheMatrix (const Matrix44<S> &v);
- //---------
- // Identity
- //---------
- void makeIdentity();
- //---------
- // Equality
- //---------
- bool operator == (const Matrix44 &v) const;
- bool operator != (const Matrix44 &v) const;
- //-----------------------------------------------------------------------
- // Compare two matrices and test if they are "approximately equal":
- //
- // equalWithAbsError (m, e)
- //
- // Returns true if the coefficients of this and m are the same with
- // an absolute error of no more than e, i.e., for all i, j
- //
- // abs (this[i][j] - m[i][j]) <= e
- //
- // equalWithRelError (m, e)
- //
- // Returns true if the coefficients of this and m are the same with
- // a relative error of no more than e, i.e., for all i, j
- //
- // abs (this[i] - v[i][j]) <= e * abs (this[i][j])
- //-----------------------------------------------------------------------
- bool equalWithAbsError (const Matrix44<T> &v, T e) const;
- bool equalWithRelError (const Matrix44<T> &v, T e) const;
- //------------------------
- // Component-wise addition
- //------------------------
- const Matrix44 & operator += (const Matrix44 &v);
- const Matrix44 & operator += (T a);
- Matrix44 operator + (const Matrix44 &v) const;
- //---------------------------
- // Component-wise subtraction
- //---------------------------
- const Matrix44 & operator -= (const Matrix44 &v);
- const Matrix44 & operator -= (T a);
- Matrix44 operator - (const Matrix44 &v) const;
- //------------------------------------
- // Component-wise multiplication by -1
- //------------------------------------
- Matrix44 operator - () const;
- const Matrix44 & negate ();
- //------------------------------
- // Component-wise multiplication
- //------------------------------
- const Matrix44 & operator *= (T a);
- Matrix44 operator * (T a) const;
- //-----------------------------------
- // Matrix-times-matrix multiplication
- //-----------------------------------
- const Matrix44 & operator *= (const Matrix44 &v);
- Matrix44 operator * (const Matrix44 &v) const;
- static void multiply (const Matrix44 &a, // assumes that
- const Matrix44 &b, // &a != &c and
- Matrix44 &c); // &b != &c.
- //-----------------------------------------------------------------
- // Vector-times-matrix multiplication; see also the "operator *"
- // functions defined below.
- //
- // m.multVecMatrix(src,dst) implements a homogeneous transformation
- // by computing Vec4 (src.x, src.y, src.z, 1) * m and dividing by
- // the result's third element.
- //
- // m.multDirMatrix(src,dst) multiplies src by the upper left 3x3
- // submatrix, ignoring the rest of matrix m.
- //-----------------------------------------------------------------
- template <class S>
- void multVecMatrix(const Vec3<S> &src, Vec3<S> &dst) const;
- template <class S>
- void multDirMatrix(const Vec3<S> &src, Vec3<S> &dst) const;
- //------------------------
- // Component-wise division
- //------------------------
- const Matrix44 & operator /= (T a);
- Matrix44 operator / (T a) const;
- //------------------
- // Transposed matrix
- //------------------
- const Matrix44 & transpose ();
- Matrix44 transposed () const;
- //------------------------------------------------------------
- // Inverse matrix: If singExc is false, inverting a singular
- // matrix produces an identity matrix. If singExc is true,
- // inverting a singular matrix throws a SingMatrixExc.
- //
- // inverse() and invert() invert matrices using determinants;
- // gjInverse() and gjInvert() use the Gauss-Jordan method.
- //
- // inverse() and invert() are significantly faster than
- // gjInverse() and gjInvert(), but the results may be slightly
- // less accurate.
- //
- //------------------------------------------------------------
- const Matrix44 & invert (bool singExc = false);
- Matrix44<T> inverse (bool singExc = false) const;
- const Matrix44 & gjInvert (bool singExc = false);
- Matrix44<T> gjInverse (bool singExc = false) const;
- //------------------------------------------------
- // Calculate the matrix minor of the (r,c) element
- //------------------------------------------------
- T minorOf (const int r, const int c) const;
- //---------------------------------------------------
- // Build a minor using the specified rows and columns
- //---------------------------------------------------
- T fastMinor (const int r0, const int r1, const int r2,
- const int c0, const int c1, const int c2) const;
- //------------
- // Determinant
- //------------
- T determinant() const;
- //--------------------------------------------------------
- // Set matrix to rotation by XYZ euler angles (in radians)
- //--------------------------------------------------------
- template <class S>
- const Matrix44 & setEulerAngles (const Vec3<S>& r);
- //--------------------------------------------------------
- // Set matrix to rotation around given axis by given angle
- //--------------------------------------------------------
- template <class S>
- const Matrix44 & setAxisAngle (const Vec3<S>& ax, S ang);
- //-------------------------------------------
- // Rotate the matrix by XYZ euler angles in r
- //-------------------------------------------
- template <class S>
- const Matrix44 & rotate (const Vec3<S> &r);
- //--------------------------------------------
- // Set matrix to scale by given uniform factor
- //--------------------------------------------
- const Matrix44 & setScale (T s);
- //------------------------------------
- // Set matrix to scale by given vector
- //------------------------------------
- template <class S>
- const Matrix44 & setScale (const Vec3<S> &s);
- //----------------------
- // Scale the matrix by s
- //----------------------
- template <class S>
- const Matrix44 & scale (const Vec3<S> &s);
- //------------------------------------------
- // Set matrix to translation by given vector
- //------------------------------------------
- template <class S>
- const Matrix44 & setTranslation (const Vec3<S> &t);
- //-----------------------------
- // Return translation component
- //-----------------------------
- const Vec3<T> translation () const;
- //--------------------------
- // Translate the matrix by t
- //--------------------------
- template <class S>
- const Matrix44 & translate (const Vec3<S> &t);
- //-------------------------------------------------------------
- // Set matrix to shear by given vector h. The resulting matrix
- // will shear x for each y coord. by a factor of h[0] ;
- // will shear x for each z coord. by a factor of h[1] ;
- // will shear y for each z coord. by a factor of h[2] .
- //-------------------------------------------------------------
- template <class S>
- const Matrix44 & setShear (const Vec3<S> &h);
- //------------------------------------------------------------
- // Set matrix to shear by given factors. The resulting matrix
- // will shear x for each y coord. by a factor of h.xy ;
- // will shear x for each z coord. by a factor of h.xz ;
- // will shear y for each z coord. by a factor of h.yz ;
- // will shear y for each x coord. by a factor of h.yx ;
- // will shear z for each x coord. by a factor of h.zx ;
- // will shear z for each y coord. by a factor of h.zy .
- //------------------------------------------------------------
- template <class S>
- const Matrix44 & setShear (const Shear6<S> &h);
- //--------------------------------------------------------
- // Shear the matrix by given vector. The composed matrix
- // will be <shear> * <this>, where the shear matrix ...
- // will shear x for each y coord. by a factor of h[0] ;
- // will shear x for each z coord. by a factor of h[1] ;
- // will shear y for each z coord. by a factor of h[2] .
- //--------------------------------------------------------
- template <class S>
- const Matrix44 & shear (const Vec3<S> &h);
- //--------------------------------------------------------
- // Number of the row and column dimensions, since
- // Matrix44 is a square matrix.
- //--------------------------------------------------------
- static unsigned int dimensions() {return 4;}
- //------------------------------------------------------------
- // Shear the matrix by the given factors. The composed matrix
- // will be <shear> * <this>, where the shear matrix ...
- // will shear x for each y coord. by a factor of h.xy ;
- // will shear x for each z coord. by a factor of h.xz ;
- // will shear y for each z coord. by a factor of h.yz ;
- // will shear y for each x coord. by a factor of h.yx ;
- // will shear z for each x coord. by a factor of h.zx ;
- // will shear z for each y coord. by a factor of h.zy .
- //------------------------------------------------------------
- template <class S>
- const Matrix44 & shear (const Shear6<S> &h);
- //-------------------------------------------------
- // Limitations of type T (see also class limits<T>)
- //-------------------------------------------------
- static T baseTypeMin() {return limits<T>::min();}
- static T baseTypeMax() {return limits<T>::max();}
- static T baseTypeSmallest() {return limits<T>::smallest();}
- static T baseTypeEpsilon() {return limits<T>::epsilon();}
- typedef T BaseType;
- typedef Vec4<T> BaseVecType;
- private:
- template <typename R, typename S>
- struct isSameType
- {
- enum {value = 0};
- };
- template <typename R>
- struct isSameType<R, R>
- {
- enum {value = 1};
- };
- };
- //--------------
- // Stream output
- //--------------
- template <class T>
- std::ostream & operator << (std::ostream & s, const Matrix33<T> &m);
- template <class T>
- std::ostream & operator << (std::ostream & s, const Matrix44<T> &m);
- //---------------------------------------------
- // Vector-times-matrix multiplication operators
- //---------------------------------------------
- template <class S, class T>
- const Vec2<S> & operator *= (Vec2<S> &v, const Matrix33<T> &m);
- template <class S, class T>
- Vec2<S> operator * (const Vec2<S> &v, const Matrix33<T> &m);
- template <class S, class T>
- const Vec3<S> & operator *= (Vec3<S> &v, const Matrix33<T> &m);
- template <class S, class T>
- Vec3<S> operator * (const Vec3<S> &v, const Matrix33<T> &m);
- template <class S, class T>
- const Vec3<S> & operator *= (Vec3<S> &v, const Matrix44<T> &m);
- template <class S, class T>
- Vec3<S> operator * (const Vec3<S> &v, const Matrix44<T> &m);
- template <class S, class T>
- const Vec4<S> & operator *= (Vec4<S> &v, const Matrix44<T> &m);
- template <class S, class T>
- Vec4<S> operator * (const Vec4<S> &v, const Matrix44<T> &m);
- //-------------------------
- // Typedefs for convenience
- //-------------------------
- typedef Matrix33 <float> M33f;
- typedef Matrix33 <double> M33d;
- typedef Matrix44 <float> M44f;
- typedef Matrix44 <double> M44d;
- //---------------------------
- // Implementation of Matrix33
- //---------------------------
- template <class T>
- inline T *
- Matrix33<T>::operator [] (int i)
- {
- return x[i];
- }
- template <class T>
- inline const T *
- Matrix33<T>::operator [] (int i) const
- {
- return x[i];
- }
- template <class T>
- inline
- Matrix33<T>::Matrix33 ()
- {
- memset (x, 0, sizeof (x));
- x[0][0] = 1;
- x[1][1] = 1;
- x[2][2] = 1;
- }
- template <class T>
- inline
- Matrix33<T>::Matrix33 (T a)
- {
- x[0][0] = a;
- x[0][1] = a;
- x[0][2] = a;
- x[1][0] = a;
- x[1][1] = a;
- x[1][2] = a;
- x[2][0] = a;
- x[2][1] = a;
- x[2][2] = a;
- }
- template <class T>
- inline
- Matrix33<T>::Matrix33 (const T a[3][3])
- {
- memcpy (x, a, sizeof (x));
- }
- template <class T>
- inline
- Matrix33<T>::Matrix33 (T a, T b, T c, T d, T e, T f, T g, T h, T i)
- {
- x[0][0] = a;
- x[0][1] = b;
- x[0][2] = c;
- x[1][0] = d;
- x[1][1] = e;
- x[1][2] = f;
- x[2][0] = g;
- x[2][1] = h;
- x[2][2] = i;
- }
- template <class T>
- inline
- Matrix33<T>::Matrix33 (const Matrix33 &v)
- {
- memcpy (x, v.x, sizeof (x));
- }
- template <class T>
- template <class S>
- inline
- Matrix33<T>::Matrix33 (const Matrix33<S> &v)
- {
- x[0][0] = T (v.x[0][0]);
- x[0][1] = T (v.x[0][1]);
- x[0][2] = T (v.x[0][2]);
- x[1][0] = T (v.x[1][0]);
- x[1][1] = T (v.x[1][1]);
- x[1][2] = T (v.x[1][2]);
- x[2][0] = T (v.x[2][0]);
- x[2][1] = T (v.x[2][1]);
- x[2][2] = T (v.x[2][2]);
- }
- template <class T>
- inline const Matrix33<T> &
- Matrix33<T>::operator = (const Matrix33 &v)
- {
- memcpy (x, v.x, sizeof (x));
- return *this;
- }
- template <class T>
- inline const Matrix33<T> &
- Matrix33<T>::operator = (T a)
- {
- x[0][0] = a;
- x[0][1] = a;
- x[0][2] = a;
- x[1][0] = a;
- x[1][1] = a;
- x[1][2] = a;
- x[2][0] = a;
- x[2][1] = a;
- x[2][2] = a;
- return *this;
- }
- template <class T>
- inline T *
- Matrix33<T>::getValue ()
- {
- return (T *) &x[0][0];
- }
- template <class T>
- inline const T *
- Matrix33<T>::getValue () const
- {
- return (const T *) &x[0][0];
- }
- template <class T>
- template <class S>
- inline void
- Matrix33<T>::getValue (Matrix33<S> &v) const
- {
- if (isSameType<S,T>::value)
- {
- memcpy (v.x, x, sizeof (x));
- }
- else
- {
- v.x[0][0] = x[0][0];
- v.x[0][1] = x[0][1];
- v.x[0][2] = x[0][2];
- v.x[1][0] = x[1][0];
- v.x[1][1] = x[1][1];
- v.x[1][2] = x[1][2];
- v.x[2][0] = x[2][0];
- v.x[2][1] = x[2][1];
- v.x[2][2] = x[2][2];
- }
- }
- template <class T>
- template <class S>
- inline Matrix33<T> &
- Matrix33<T>::setValue (const Matrix33<S> &v)
- {
- if (isSameType<S,T>::value)
- {
- memcpy (x, v.x, sizeof (x));
- }
- else
- {
- x[0][0] = v.x[0][0];
- x[0][1] = v.x[0][1];
- x[0][2] = v.x[0][2];
- x[1][0] = v.x[1][0];
- x[1][1] = v.x[1][1];
- x[1][2] = v.x[1][2];
- x[2][0] = v.x[2][0];
- x[2][1] = v.x[2][1];
- x[2][2] = v.x[2][2];
- }
- return *this;
- }
- template <class T>
- template <class S>
- inline Matrix33<T> &
- Matrix33<T>::setTheMatrix (const Matrix33<S> &v)
- {
- if (isSameType<S,T>::value)
- {
- memcpy (x, v.x, sizeof (x));
- }
- else
- {
- x[0][0] = v.x[0][0];
- x[0][1] = v.x[0][1];
- x[0][2] = v.x[0][2];
- x[1][0] = v.x[1][0];
- x[1][1] = v.x[1][1];
- x[1][2] = v.x[1][2];
- x[2][0] = v.x[2][0];
- x[2][1] = v.x[2][1];
- x[2][2] = v.x[2][2];
- }
- return *this;
- }
- template <class T>
- inline void
- Matrix33<T>::makeIdentity()
- {
- memset (x, 0, sizeof (x));
- x[0][0] = 1;
- x[1][1] = 1;
- x[2][2] = 1;
- }
- template <class T>
- bool
- Matrix33<T>::operator == (const Matrix33 &v) const
- {
- return x[0][0] == v.x[0][0] &&
- x[0][1] == v.x[0][1] &&
- x[0][2] == v.x[0][2] &&
- x[1][0] == v.x[1][0] &&
- x[1][1] == v.x[1][1] &&
- x[1][2] == v.x[1][2] &&
- x[2][0] == v.x[2][0] &&
- x[2][1] == v.x[2][1] &&
- x[2][2] == v.x[2][2];
- }
- template <class T>
- bool
- Matrix33<T>::operator != (const Matrix33 &v) const
- {
- return x[0][0] != v.x[0][0] ||
- x[0][1] != v.x[0][1] ||
- x[0][2] != v.x[0][2] ||
- x[1][0] != v.x[1][0] ||
- x[1][1] != v.x[1][1] ||
- x[1][2] != v.x[1][2] ||
- x[2][0] != v.x[2][0] ||
- x[2][1] != v.x[2][1] ||
- x[2][2] != v.x[2][2];
- }
- template <class T>
- bool
- Matrix33<T>::equalWithAbsError (const Matrix33<T> &m, T e) const
- {
- for (int i = 0; i < 3; i++)
- for (int j = 0; j < 3; j++)
- if (!IMATH_INTERNAL_NAMESPACE::equalWithAbsError ((*this)[i][j], m[i][j], e))
- return false;
- return true;
- }
- template <class T>
- bool
- Matrix33<T>::equalWithRelError (const Matrix33<T> &m, T e) const
- {
- for (int i = 0; i < 3; i++)
- for (int j = 0; j < 3; j++)
- if (!IMATH_INTERNAL_NAMESPACE::equalWithRelError ((*this)[i][j], m[i][j], e))
- return false;
- return true;
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::operator += (const Matrix33<T> &v)
- {
- x[0][0] += v.x[0][0];
- x[0][1] += v.x[0][1];
- x[0][2] += v.x[0][2];
- x[1][0] += v.x[1][0];
- x[1][1] += v.x[1][1];
- x[1][2] += v.x[1][2];
- x[2][0] += v.x[2][0];
- x[2][1] += v.x[2][1];
- x[2][2] += v.x[2][2];
- return *this;
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::operator += (T a)
- {
- x[0][0] += a;
- x[0][1] += a;
- x[0][2] += a;
- x[1][0] += a;
- x[1][1] += a;
- x[1][2] += a;
- x[2][0] += a;
- x[2][1] += a;
- x[2][2] += a;
-
- return *this;
- }
- template <class T>
- Matrix33<T>
- Matrix33<T>::operator + (const Matrix33<T> &v) const
- {
- return Matrix33 (x[0][0] + v.x[0][0],
- x[0][1] + v.x[0][1],
- x[0][2] + v.x[0][2],
- x[1][0] + v.x[1][0],
- x[1][1] + v.x[1][1],
- x[1][2] + v.x[1][2],
- x[2][0] + v.x[2][0],
- x[2][1] + v.x[2][1],
- x[2][2] + v.x[2][2]);
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::operator -= (const Matrix33<T> &v)
- {
- x[0][0] -= v.x[0][0];
- x[0][1] -= v.x[0][1];
- x[0][2] -= v.x[0][2];
- x[1][0] -= v.x[1][0];
- x[1][1] -= v.x[1][1];
- x[1][2] -= v.x[1][2];
- x[2][0] -= v.x[2][0];
- x[2][1] -= v.x[2][1];
- x[2][2] -= v.x[2][2];
-
- return *this;
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::operator -= (T a)
- {
- x[0][0] -= a;
- x[0][1] -= a;
- x[0][2] -= a;
- x[1][0] -= a;
- x[1][1] -= a;
- x[1][2] -= a;
- x[2][0] -= a;
- x[2][1] -= a;
- x[2][2] -= a;
-
- return *this;
- }
- template <class T>
- Matrix33<T>
- Matrix33<T>::operator - (const Matrix33<T> &v) const
- {
- return Matrix33 (x[0][0] - v.x[0][0],
- x[0][1] - v.x[0][1],
- x[0][2] - v.x[0][2],
- x[1][0] - v.x[1][0],
- x[1][1] - v.x[1][1],
- x[1][2] - v.x[1][2],
- x[2][0] - v.x[2][0],
- x[2][1] - v.x[2][1],
- x[2][2] - v.x[2][2]);
- }
- template <class T>
- Matrix33<T>
- Matrix33<T>::operator - () const
- {
- return Matrix33 (-x[0][0],
- -x[0][1],
- -x[0][2],
- -x[1][0],
- -x[1][1],
- -x[1][2],
- -x[2][0],
- -x[2][1],
- -x[2][2]);
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::negate ()
- {
- x[0][0] = -x[0][0];
- x[0][1] = -x[0][1];
- x[0][2] = -x[0][2];
- x[1][0] = -x[1][0];
- x[1][1] = -x[1][1];
- x[1][2] = -x[1][2];
- x[2][0] = -x[2][0];
- x[2][1] = -x[2][1];
- x[2][2] = -x[2][2];
- return *this;
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::operator *= (T a)
- {
- x[0][0] *= a;
- x[0][1] *= a;
- x[0][2] *= a;
- x[1][0] *= a;
- x[1][1] *= a;
- x[1][2] *= a;
- x[2][0] *= a;
- x[2][1] *= a;
- x[2][2] *= a;
-
- return *this;
- }
- template <class T>
- Matrix33<T>
- Matrix33<T>::operator * (T a) const
- {
- return Matrix33 (x[0][0] * a,
- x[0][1] * a,
- x[0][2] * a,
- x[1][0] * a,
- x[1][1] * a,
- x[1][2] * a,
- x[2][0] * a,
- x[2][1] * a,
- x[2][2] * a);
- }
- template <class T>
- inline Matrix33<T>
- operator * (T a, const Matrix33<T> &v)
- {
- return v * a;
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::operator *= (const Matrix33<T> &v)
- {
- Matrix33 tmp (T (0));
- for (int i = 0; i < 3; i++)
- for (int j = 0; j < 3; j++)
- for (int k = 0; k < 3; k++)
- tmp.x[i][j] += x[i][k] * v.x[k][j];
- *this = tmp;
- return *this;
- }
- template <class T>
- Matrix33<T>
- Matrix33<T>::operator * (const Matrix33<T> &v) const
- {
- Matrix33 tmp (T (0));
- for (int i = 0; i < 3; i++)
- for (int j = 0; j < 3; j++)
- for (int k = 0; k < 3; k++)
- tmp.x[i][j] += x[i][k] * v.x[k][j];
- return tmp;
- }
- template <class T>
- template <class S>
- void
- Matrix33<T>::multVecMatrix(const Vec2<S> &src, Vec2<S> &dst) const
- {
- S a, b, w;
- a = src[0] * x[0][0] + src[1] * x[1][0] + x[2][0];
- b = src[0] * x[0][1] + src[1] * x[1][1] + x[2][1];
- w = src[0] * x[0][2] + src[1] * x[1][2] + x[2][2];
- dst.x = a / w;
- dst.y = b / w;
- }
- template <class T>
- template <class S>
- void
- Matrix33<T>::multDirMatrix(const Vec2<S> &src, Vec2<S> &dst) const
- {
- S a, b;
- a = src[0] * x[0][0] + src[1] * x[1][0];
- b = src[0] * x[0][1] + src[1] * x[1][1];
- dst.x = a;
- dst.y = b;
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::operator /= (T a)
- {
- x[0][0] /= a;
- x[0][1] /= a;
- x[0][2] /= a;
- x[1][0] /= a;
- x[1][1] /= a;
- x[1][2] /= a;
- x[2][0] /= a;
- x[2][1] /= a;
- x[2][2] /= a;
-
- return *this;
- }
- template <class T>
- Matrix33<T>
- Matrix33<T>::operator / (T a) const
- {
- return Matrix33 (x[0][0] / a,
- x[0][1] / a,
- x[0][2] / a,
- x[1][0] / a,
- x[1][1] / a,
- x[1][2] / a,
- x[2][0] / a,
- x[2][1] / a,
- x[2][2] / a);
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::transpose ()
- {
- Matrix33 tmp (x[0][0],
- x[1][0],
- x[2][0],
- x[0][1],
- x[1][1],
- x[2][1],
- x[0][2],
- x[1][2],
- x[2][2]);
- *this = tmp;
- return *this;
- }
- template <class T>
- Matrix33<T>
- Matrix33<T>::transposed () const
- {
- return Matrix33 (x[0][0],
- x[1][0],
- x[2][0],
- x[0][1],
- x[1][1],
- x[2][1],
- x[0][2],
- x[1][2],
- x[2][2]);
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::gjInvert (bool singExc)
- {
- *this = gjInverse (singExc);
- return *this;
- }
- template <class T>
- Matrix33<T>
- Matrix33<T>::gjInverse (bool singExc) const
- {
- int i, j, k;
- Matrix33 s;
- Matrix33 t (*this);
- // Forward elimination
- for (i = 0; i < 2 ; i++)
- {
- int pivot = i;
- T pivotsize = t[i][i];
- if (pivotsize < 0)
- pivotsize = -pivotsize;
- for (j = i + 1; j < 3; j++)
- {
- T tmp = t[j][i];
- if (tmp < 0)
- tmp = -tmp;
- if (tmp > pivotsize)
- {
- pivot = j;
- pivotsize = tmp;
- }
- }
- if (pivotsize == 0)
- {
- if (singExc)
- throw ::IMATH_INTERNAL_NAMESPACE::SingMatrixExc ("Cannot invert singular matrix.");
- return Matrix33();
- }
- if (pivot != i)
- {
- for (j = 0; j < 3; j++)
- {
- T tmp;
- tmp = t[i][j];
- t[i][j] = t[pivot][j];
- t[pivot][j] = tmp;
- tmp = s[i][j];
- s[i][j] = s[pivot][j];
- s[pivot][j] = tmp;
- }
- }
- for (j = i + 1; j < 3; j++)
- {
- T f = t[j][i] / t[i][i];
- for (k = 0; k < 3; k++)
- {
- t[j][k] -= f * t[i][k];
- s[j][k] -= f * s[i][k];
- }
- }
- }
- // Backward substitution
- for (i = 2; i >= 0; --i)
- {
- T f;
- if ((f = t[i][i]) == 0)
- {
- if (singExc)
- throw ::IMATH_INTERNAL_NAMESPACE::SingMatrixExc ("Cannot invert singular matrix.");
- return Matrix33();
- }
- for (j = 0; j < 3; j++)
- {
- t[i][j] /= f;
- s[i][j] /= f;
- }
- for (j = 0; j < i; j++)
- {
- f = t[j][i];
- for (k = 0; k < 3; k++)
- {
- t[j][k] -= f * t[i][k];
- s[j][k] -= f * s[i][k];
- }
- }
- }
- return s;
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::invert (bool singExc)
- {
- *this = inverse (singExc);
- return *this;
- }
- template <class T>
- Matrix33<T>
- Matrix33<T>::inverse (bool singExc) const
- {
- if (x[0][2] != 0 || x[1][2] != 0 || x[2][2] != 1)
- {
- Matrix33 s (x[1][1] * x[2][2] - x[2][1] * x[1][2],
- x[2][1] * x[0][2] - x[0][1] * x[2][2],
- x[0][1] * x[1][2] - x[1][1] * x[0][2],
- x[2][0] * x[1][2] - x[1][0] * x[2][2],
- x[0][0] * x[2][2] - x[2][0] * x[0][2],
- x[1][0] * x[0][2] - x[0][0] * x[1][2],
- x[1][0] * x[2][1] - x[2][0] * x[1][1],
- x[2][0] * x[0][1] - x[0][0] * x[2][1],
- x[0][0] * x[1][1] - x[1][0] * x[0][1]);
- T r = x[0][0] * s[0][0] + x[0][1] * s[1][0] + x[0][2] * s[2][0];
- if (IMATH_INTERNAL_NAMESPACE::abs (r) >= 1)
- {
- for (int i = 0; i < 3; ++i)
- {
- for (int j = 0; j < 3; ++j)
- {
- s[i][j] /= r;
- }
- }
- }
- else
- {
- T mr = IMATH_INTERNAL_NAMESPACE::abs (r) / limits<T>::smallest();
- for (int i = 0; i < 3; ++i)
- {
- for (int j = 0; j < 3; ++j)
- {
- if (mr > IMATH_INTERNAL_NAMESPACE::abs (s[i][j]))
- {
- s[i][j] /= r;
- }
- else
- {
- if (singExc)
- throw SingMatrixExc ("Cannot invert "
- "singular matrix.");
- return Matrix33();
- }
- }
- }
- }
- return s;
- }
- else
- {
- Matrix33 s ( x[1][1],
- -x[0][1],
- 0,
- -x[1][0],
- x[0][0],
- 0,
- 0,
- 0,
- 1);
- T r = x[0][0] * x[1][1] - x[1][0] * x[0][1];
- if (IMATH_INTERNAL_NAMESPACE::abs (r) >= 1)
- {
- for (int i = 0; i < 2; ++i)
- {
- for (int j = 0; j < 2; ++j)
- {
- s[i][j] /= r;
- }
- }
- }
- else
- {
- T mr = IMATH_INTERNAL_NAMESPACE::abs (r) / limits<T>::smallest();
- for (int i = 0; i < 2; ++i)
- {
- for (int j = 0; j < 2; ++j)
- {
- if (mr > IMATH_INTERNAL_NAMESPACE::abs (s[i][j]))
- {
- s[i][j] /= r;
- }
- else
- {
- if (singExc)
- throw SingMatrixExc ("Cannot invert "
- "singular matrix.");
- return Matrix33();
- }
- }
- }
- }
- s[2][0] = -x[2][0] * s[0][0] - x[2][1] * s[1][0];
- s[2][1] = -x[2][0] * s[0][1] - x[2][1] * s[1][1];
- return s;
- }
- }
- template <class T>
- inline T
- Matrix33<T>::minorOf (const int r, const int c) const
- {
- int r0 = 0 + (r < 1 ? 1 : 0);
- int r1 = 1 + (r < 2 ? 1 : 0);
- int c0 = 0 + (c < 1 ? 1 : 0);
- int c1 = 1 + (c < 2 ? 1 : 0);
- return x[r0][c0]*x[r1][c1] - x[r1][c0]*x[r0][c1];
- }
- template <class T>
- inline T
- Matrix33<T>::fastMinor( const int r0, const int r1,
- const int c0, const int c1) const
- {
- return x[r0][c0]*x[r1][c1] - x[r0][c1]*x[r1][c0];
- }
- template <class T>
- inline T
- Matrix33<T>::determinant () const
- {
- return x[0][0]*(x[1][1]*x[2][2] - x[1][2]*x[2][1]) +
- x[0][1]*(x[1][2]*x[2][0] - x[1][0]*x[2][2]) +
- x[0][2]*(x[1][0]*x[2][1] - x[1][1]*x[2][0]);
- }
- template <class T>
- template <class S>
- const Matrix33<T> &
- Matrix33<T>::setRotation (S r)
- {
- S cos_r, sin_r;
- cos_r = Math<T>::cos (r);
- sin_r = Math<T>::sin (r);
- x[0][0] = cos_r;
- x[0][1] = sin_r;
- x[0][2] = 0;
- x[1][0] = -sin_r;
- x[1][1] = cos_r;
- x[1][2] = 0;
- x[2][0] = 0;
- x[2][1] = 0;
- x[2][2] = 1;
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix33<T> &
- Matrix33<T>::rotate (S r)
- {
- *this *= Matrix33<T>().setRotation (r);
- return *this;
- }
- template <class T>
- const Matrix33<T> &
- Matrix33<T>::setScale (T s)
- {
- memset (x, 0, sizeof (x));
- x[0][0] = s;
- x[1][1] = s;
- x[2][2] = 1;
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix33<T> &
- Matrix33<T>::setScale (const Vec2<S> &s)
- {
- memset (x, 0, sizeof (x));
- x[0][0] = s[0];
- x[1][1] = s[1];
- x[2][2] = 1;
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix33<T> &
- Matrix33<T>::scale (const Vec2<S> &s)
- {
- x[0][0] *= s[0];
- x[0][1] *= s[0];
- x[0][2] *= s[0];
- x[1][0] *= s[1];
- x[1][1] *= s[1];
- x[1][2] *= s[1];
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix33<T> &
- Matrix33<T>::setTranslation (const Vec2<S> &t)
- {
- x[0][0] = 1;
- x[0][1] = 0;
- x[0][2] = 0;
- x[1][0] = 0;
- x[1][1] = 1;
- x[1][2] = 0;
- x[2][0] = t[0];
- x[2][1] = t[1];
- x[2][2] = 1;
- return *this;
- }
- template <class T>
- inline Vec2<T>
- Matrix33<T>::translation () const
- {
- return Vec2<T> (x[2][0], x[2][1]);
- }
- template <class T>
- template <class S>
- const Matrix33<T> &
- Matrix33<T>::translate (const Vec2<S> &t)
- {
- x[2][0] += t[0] * x[0][0] + t[1] * x[1][0];
- x[2][1] += t[0] * x[0][1] + t[1] * x[1][1];
- x[2][2] += t[0] * x[0][2] + t[1] * x[1][2];
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix33<T> &
- Matrix33<T>::setShear (const S &xy)
- {
- x[0][0] = 1;
- x[0][1] = 0;
- x[0][2] = 0;
- x[1][0] = xy;
- x[1][1] = 1;
- x[1][2] = 0;
- x[2][0] = 0;
- x[2][1] = 0;
- x[2][2] = 1;
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix33<T> &
- Matrix33<T>::setShear (const Vec2<S> &h)
- {
- x[0][0] = 1;
- x[0][1] = h[1];
- x[0][2] = 0;
- x[1][0] = h[0];
- x[1][1] = 1;
- x[1][2] = 0;
- x[2][0] = 0;
- x[2][1] = 0;
- x[2][2] = 1;
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix33<T> &
- Matrix33<T>::shear (const S &xy)
- {
- //
- // In this case, we don't need a temp. copy of the matrix
- // because we never use a value on the RHS after we've
- // changed it on the LHS.
- //
- x[1][0] += xy * x[0][0];
- x[1][1] += xy * x[0][1];
- x[1][2] += xy * x[0][2];
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix33<T> &
- Matrix33<T>::shear (const Vec2<S> &h)
- {
- Matrix33<T> P (*this);
-
- x[0][0] = P[0][0] + h[1] * P[1][0];
- x[0][1] = P[0][1] + h[1] * P[1][1];
- x[0][2] = P[0][2] + h[1] * P[1][2];
-
- x[1][0] = P[1][0] + h[0] * P[0][0];
- x[1][1] = P[1][1] + h[0] * P[0][1];
- x[1][2] = P[1][2] + h[0] * P[0][2];
- return *this;
- }
- //---------------------------
- // Implementation of Matrix44
- //---------------------------
- template <class T>
- inline T *
- Matrix44<T>::operator [] (int i)
- {
- return x[i];
- }
- template <class T>
- inline const T *
- Matrix44<T>::operator [] (int i) const
- {
- return x[i];
- }
- template <class T>
- inline
- Matrix44<T>::Matrix44 ()
- {
- memset (x, 0, sizeof (x));
- x[0][0] = 1;
- x[1][1] = 1;
- x[2][2] = 1;
- x[3][3] = 1;
- }
- template <class T>
- inline
- Matrix44<T>::Matrix44 (T a)
- {
- x[0][0] = a;
- x[0][1] = a;
- x[0][2] = a;
- x[0][3] = a;
- x[1][0] = a;
- x[1][1] = a;
- x[1][2] = a;
- x[1][3] = a;
- x[2][0] = a;
- x[2][1] = a;
- x[2][2] = a;
- x[2][3] = a;
- x[3][0] = a;
- x[3][1] = a;
- x[3][2] = a;
- x[3][3] = a;
- }
- template <class T>
- inline
- Matrix44<T>::Matrix44 (const T a[4][4])
- {
- memcpy (x, a, sizeof (x));
- }
- template <class T>
- inline
- Matrix44<T>::Matrix44 (T a, T b, T c, T d, T e, T f, T g, T h,
- T i, T j, T k, T l, T m, T n, T o, T p)
- {
- x[0][0] = a;
- x[0][1] = b;
- x[0][2] = c;
- x[0][3] = d;
- x[1][0] = e;
- x[1][1] = f;
- x[1][2] = g;
- x[1][3] = h;
- x[2][0] = i;
- x[2][1] = j;
- x[2][2] = k;
- x[2][3] = l;
- x[3][0] = m;
- x[3][1] = n;
- x[3][2] = o;
- x[3][3] = p;
- }
- template <class T>
- inline
- Matrix44<T>::Matrix44 (Matrix33<T> r, Vec3<T> t)
- {
- x[0][0] = r[0][0];
- x[0][1] = r[0][1];
- x[0][2] = r[0][2];
- x[0][3] = 0;
- x[1][0] = r[1][0];
- x[1][1] = r[1][1];
- x[1][2] = r[1][2];
- x[1][3] = 0;
- x[2][0] = r[2][0];
- x[2][1] = r[2][1];
- x[2][2] = r[2][2];
- x[2][3] = 0;
- x[3][0] = t[0];
- x[3][1] = t[1];
- x[3][2] = t[2];
- x[3][3] = 1;
- }
- template <class T>
- inline
- Matrix44<T>::Matrix44 (const Matrix44 &v)
- {
- x[0][0] = v.x[0][0];
- x[0][1] = v.x[0][1];
- x[0][2] = v.x[0][2];
- x[0][3] = v.x[0][3];
- x[1][0] = v.x[1][0];
- x[1][1] = v.x[1][1];
- x[1][2] = v.x[1][2];
- x[1][3] = v.x[1][3];
- x[2][0] = v.x[2][0];
- x[2][1] = v.x[2][1];
- x[2][2] = v.x[2][2];
- x[2][3] = v.x[2][3];
- x[3][0] = v.x[3][0];
- x[3][1] = v.x[3][1];
- x[3][2] = v.x[3][2];
- x[3][3] = v.x[3][3];
- }
- template <class T>
- template <class S>
- inline
- Matrix44<T>::Matrix44 (const Matrix44<S> &v)
- {
- x[0][0] = T (v.x[0][0]);
- x[0][1] = T (v.x[0][1]);
- x[0][2] = T (v.x[0][2]);
- x[0][3] = T (v.x[0][3]);
- x[1][0] = T (v.x[1][0]);
- x[1][1] = T (v.x[1][1]);
- x[1][2] = T (v.x[1][2]);
- x[1][3] = T (v.x[1][3]);
- x[2][0] = T (v.x[2][0]);
- x[2][1] = T (v.x[2][1]);
- x[2][2] = T (v.x[2][2]);
- x[2][3] = T (v.x[2][3]);
- x[3][0] = T (v.x[3][0]);
- x[3][1] = T (v.x[3][1]);
- x[3][2] = T (v.x[3][2]);
- x[3][3] = T (v.x[3][3]);
- }
- template <class T>
- inline const Matrix44<T> &
- Matrix44<T>::operator = (const Matrix44 &v)
- {
- x[0][0] = v.x[0][0];
- x[0][1] = v.x[0][1];
- x[0][2] = v.x[0][2];
- x[0][3] = v.x[0][3];
- x[1][0] = v.x[1][0];
- x[1][1] = v.x[1][1];
- x[1][2] = v.x[1][2];
- x[1][3] = v.x[1][3];
- x[2][0] = v.x[2][0];
- x[2][1] = v.x[2][1];
- x[2][2] = v.x[2][2];
- x[2][3] = v.x[2][3];
- x[3][0] = v.x[3][0];
- x[3][1] = v.x[3][1];
- x[3][2] = v.x[3][2];
- x[3][3] = v.x[3][3];
- return *this;
- }
- template <class T>
- inline const Matrix44<T> &
- Matrix44<T>::operator = (T a)
- {
- x[0][0] = a;
- x[0][1] = a;
- x[0][2] = a;
- x[0][3] = a;
- x[1][0] = a;
- x[1][1] = a;
- x[1][2] = a;
- x[1][3] = a;
- x[2][0] = a;
- x[2][1] = a;
- x[2][2] = a;
- x[2][3] = a;
- x[3][0] = a;
- x[3][1] = a;
- x[3][2] = a;
- x[3][3] = a;
- return *this;
- }
- template <class T>
- inline T *
- Matrix44<T>::getValue ()
- {
- return (T *) &x[0][0];
- }
- template <class T>
- inline const T *
- Matrix44<T>::getValue () const
- {
- return (const T *) &x[0][0];
- }
- template <class T>
- template <class S>
- inline void
- Matrix44<T>::getValue (Matrix44<S> &v) const
- {
- if (isSameType<S,T>::value)
- {
- memcpy (v.x, x, sizeof (x));
- }
- else
- {
- v.x[0][0] = x[0][0];
- v.x[0][1] = x[0][1];
- v.x[0][2] = x[0][2];
- v.x[0][3] = x[0][3];
- v.x[1][0] = x[1][0];
- v.x[1][1] = x[1][1];
- v.x[1][2] = x[1][2];
- v.x[1][3] = x[1][3];
- v.x[2][0] = x[2][0];
- v.x[2][1] = x[2][1];
- v.x[2][2] = x[2][2];
- v.x[2][3] = x[2][3];
- v.x[3][0] = x[3][0];
- v.x[3][1] = x[3][1];
- v.x[3][2] = x[3][2];
- v.x[3][3] = x[3][3];
- }
- }
- template <class T>
- template <class S>
- inline Matrix44<T> &
- Matrix44<T>::setValue (const Matrix44<S> &v)
- {
- if (isSameType<S,T>::value)
- {
- memcpy (x, v.x, sizeof (x));
- }
- else
- {
- x[0][0] = v.x[0][0];
- x[0][1] = v.x[0][1];
- x[0][2] = v.x[0][2];
- x[0][3] = v.x[0][3];
- x[1][0] = v.x[1][0];
- x[1][1] = v.x[1][1];
- x[1][2] = v.x[1][2];
- x[1][3] = v.x[1][3];
- x[2][0] = v.x[2][0];
- x[2][1] = v.x[2][1];
- x[2][2] = v.x[2][2];
- x[2][3] = v.x[2][3];
- x[3][0] = v.x[3][0];
- x[3][1] = v.x[3][1];
- x[3][2] = v.x[3][2];
- x[3][3] = v.x[3][3];
- }
- return *this;
- }
- template <class T>
- template <class S>
- inline Matrix44<T> &
- Matrix44<T>::setTheMatrix (const Matrix44<S> &v)
- {
- if (isSameType<S,T>::value)
- {
- memcpy (x, v.x, sizeof (x));
- }
- else
- {
- x[0][0] = v.x[0][0];
- x[0][1] = v.x[0][1];
- x[0][2] = v.x[0][2];
- x[0][3] = v.x[0][3];
- x[1][0] = v.x[1][0];
- x[1][1] = v.x[1][1];
- x[1][2] = v.x[1][2];
- x[1][3] = v.x[1][3];
- x[2][0] = v.x[2][0];
- x[2][1] = v.x[2][1];
- x[2][2] = v.x[2][2];
- x[2][3] = v.x[2][3];
- x[3][0] = v.x[3][0];
- x[3][1] = v.x[3][1];
- x[3][2] = v.x[3][2];
- x[3][3] = v.x[3][3];
- }
- return *this;
- }
- template <class T>
- inline void
- Matrix44<T>::makeIdentity()
- {
- memset (x, 0, sizeof (x));
- x[0][0] = 1;
- x[1][1] = 1;
- x[2][2] = 1;
- x[3][3] = 1;
- }
- template <class T>
- bool
- Matrix44<T>::operator == (const Matrix44 &v) const
- {
- return x[0][0] == v.x[0][0] &&
- x[0][1] == v.x[0][1] &&
- x[0][2] == v.x[0][2] &&
- x[0][3] == v.x[0][3] &&
- x[1][0] == v.x[1][0] &&
- x[1][1] == v.x[1][1] &&
- x[1][2] == v.x[1][2] &&
- x[1][3] == v.x[1][3] &&
- x[2][0] == v.x[2][0] &&
- x[2][1] == v.x[2][1] &&
- x[2][2] == v.x[2][2] &&
- x[2][3] == v.x[2][3] &&
- x[3][0] == v.x[3][0] &&
- x[3][1] == v.x[3][1] &&
- x[3][2] == v.x[3][2] &&
- x[3][3] == v.x[3][3];
- }
- template <class T>
- bool
- Matrix44<T>::operator != (const Matrix44 &v) const
- {
- return x[0][0] != v.x[0][0] ||
- x[0][1] != v.x[0][1] ||
- x[0][2] != v.x[0][2] ||
- x[0][3] != v.x[0][3] ||
- x[1][0] != v.x[1][0] ||
- x[1][1] != v.x[1][1] ||
- x[1][2] != v.x[1][2] ||
- x[1][3] != v.x[1][3] ||
- x[2][0] != v.x[2][0] ||
- x[2][1] != v.x[2][1] ||
- x[2][2] != v.x[2][2] ||
- x[2][3] != v.x[2][3] ||
- x[3][0] != v.x[3][0] ||
- x[3][1] != v.x[3][1] ||
- x[3][2] != v.x[3][2] ||
- x[3][3] != v.x[3][3];
- }
- template <class T>
- bool
- Matrix44<T>::equalWithAbsError (const Matrix44<T> &m, T e) const
- {
- for (int i = 0; i < 4; i++)
- for (int j = 0; j < 4; j++)
- if (!IMATH_INTERNAL_NAMESPACE::equalWithAbsError ((*this)[i][j], m[i][j], e))
- return false;
- return true;
- }
- template <class T>
- bool
- Matrix44<T>::equalWithRelError (const Matrix44<T> &m, T e) const
- {
- for (int i = 0; i < 4; i++)
- for (int j = 0; j < 4; j++)
- if (!IMATH_INTERNAL_NAMESPACE::equalWithRelError ((*this)[i][j], m[i][j], e))
- return false;
- return true;
- }
- template <class T>
- const Matrix44<T> &
- Matrix44<T>::operator += (const Matrix44<T> &v)
- {
- x[0][0] += v.x[0][0];
- x[0][1] += v.x[0][1];
- x[0][2] += v.x[0][2];
- x[0][3] += v.x[0][3];
- x[1][0] += v.x[1][0];
- x[1][1] += v.x[1][1];
- x[1][2] += v.x[1][2];
- x[1][3] += v.x[1][3];
- x[2][0] += v.x[2][0];
- x[2][1] += v.x[2][1];
- x[2][2] += v.x[2][2];
- x[2][3] += v.x[2][3];
- x[3][0] += v.x[3][0];
- x[3][1] += v.x[3][1];
- x[3][2] += v.x[3][2];
- x[3][3] += v.x[3][3];
- return *this;
- }
- template <class T>
- const Matrix44<T> &
- Matrix44<T>::operator += (T a)
- {
- x[0][0] += a;
- x[0][1] += a;
- x[0][2] += a;
- x[0][3] += a;
- x[1][0] += a;
- x[1][1] += a;
- x[1][2] += a;
- x[1][3] += a;
- x[2][0] += a;
- x[2][1] += a;
- x[2][2] += a;
- x[2][3] += a;
- x[3][0] += a;
- x[3][1] += a;
- x[3][2] += a;
- x[3][3] += a;
- return *this;
- }
- template <class T>
- Matrix44<T>
- Matrix44<T>::operator + (const Matrix44<T> &v) const
- {
- return Matrix44 (x[0][0] + v.x[0][0],
- x[0][1] + v.x[0][1],
- x[0][2] + v.x[0][2],
- x[0][3] + v.x[0][3],
- x[1][0] + v.x[1][0],
- x[1][1] + v.x[1][1],
- x[1][2] + v.x[1][2],
- x[1][3] + v.x[1][3],
- x[2][0] + v.x[2][0],
- x[2][1] + v.x[2][1],
- x[2][2] + v.x[2][2],
- x[2][3] + v.x[2][3],
- x[3][0] + v.x[3][0],
- x[3][1] + v.x[3][1],
- x[3][2] + v.x[3][2],
- x[3][3] + v.x[3][3]);
- }
- template <class T>
- const Matrix44<T> &
- Matrix44<T>::operator -= (const Matrix44<T> &v)
- {
- x[0][0] -= v.x[0][0];
- x[0][1] -= v.x[0][1];
- x[0][2] -= v.x[0][2];
- x[0][3] -= v.x[0][3];
- x[1][0] -= v.x[1][0];
- x[1][1] -= v.x[1][1];
- x[1][2] -= v.x[1][2];
- x[1][3] -= v.x[1][3];
- x[2][0] -= v.x[2][0];
- x[2][1] -= v.x[2][1];
- x[2][2] -= v.x[2][2];
- x[2][3] -= v.x[2][3];
- x[3][0] -= v.x[3][0];
- x[3][1] -= v.x[3][1];
- x[3][2] -= v.x[3][2];
- x[3][3] -= v.x[3][3];
- return *this;
- }
- template <class T>
- const Matrix44<T> &
- Matrix44<T>::operator -= (T a)
- {
- x[0][0] -= a;
- x[0][1] -= a;
- x[0][2] -= a;
- x[0][3] -= a;
- x[1][0] -= a;
- x[1][1] -= a;
- x[1][2] -= a;
- x[1][3] -= a;
- x[2][0] -= a;
- x[2][1] -= a;
- x[2][2] -= a;
- x[2][3] -= a;
- x[3][0] -= a;
- x[3][1] -= a;
- x[3][2] -= a;
- x[3][3] -= a;
- return *this;
- }
- template <class T>
- Matrix44<T>
- Matrix44<T>::operator - (const Matrix44<T> &v) const
- {
- return Matrix44 (x[0][0] - v.x[0][0],
- x[0][1] - v.x[0][1],
- x[0][2] - v.x[0][2],
- x[0][3] - v.x[0][3],
- x[1][0] - v.x[1][0],
- x[1][1] - v.x[1][1],
- x[1][2] - v.x[1][2],
- x[1][3] - v.x[1][3],
- x[2][0] - v.x[2][0],
- x[2][1] - v.x[2][1],
- x[2][2] - v.x[2][2],
- x[2][3] - v.x[2][3],
- x[3][0] - v.x[3][0],
- x[3][1] - v.x[3][1],
- x[3][2] - v.x[3][2],
- x[3][3] - v.x[3][3]);
- }
- template <class T>
- Matrix44<T>
- Matrix44<T>::operator - () const
- {
- return Matrix44 (-x[0][0],
- -x[0][1],
- -x[0][2],
- -x[0][3],
- -x[1][0],
- -x[1][1],
- -x[1][2],
- -x[1][3],
- -x[2][0],
- -x[2][1],
- -x[2][2],
- -x[2][3],
- -x[3][0],
- -x[3][1],
- -x[3][2],
- -x[3][3]);
- }
- template <class T>
- const Matrix44<T> &
- Matrix44<T>::negate ()
- {
- x[0][0] = -x[0][0];
- x[0][1] = -x[0][1];
- x[0][2] = -x[0][2];
- x[0][3] = -x[0][3];
- x[1][0] = -x[1][0];
- x[1][1] = -x[1][1];
- x[1][2] = -x[1][2];
- x[1][3] = -x[1][3];
- x[2][0] = -x[2][0];
- x[2][1] = -x[2][1];
- x[2][2] = -x[2][2];
- x[2][3] = -x[2][3];
- x[3][0] = -x[3][0];
- x[3][1] = -x[3][1];
- x[3][2] = -x[3][2];
- x[3][3] = -x[3][3];
- return *this;
- }
- template <class T>
- const Matrix44<T> &
- Matrix44<T>::operator *= (T a)
- {
- x[0][0] *= a;
- x[0][1] *= a;
- x[0][2] *= a;
- x[0][3] *= a;
- x[1][0] *= a;
- x[1][1] *= a;
- x[1][2] *= a;
- x[1][3] *= a;
- x[2][0] *= a;
- x[2][1] *= a;
- x[2][2] *= a;
- x[2][3] *= a;
- x[3][0] *= a;
- x[3][1] *= a;
- x[3][2] *= a;
- x[3][3] *= a;
- return *this;
- }
- template <class T>
- Matrix44<T>
- Matrix44<T>::operator * (T a) const
- {
- return Matrix44 (x[0][0] * a,
- x[0][1] * a,
- x[0][2] * a,
- x[0][3] * a,
- x[1][0] * a,
- x[1][1] * a,
- x[1][2] * a,
- x[1][3] * a,
- x[2][0] * a,
- x[2][1] * a,
- x[2][2] * a,
- x[2][3] * a,
- x[3][0] * a,
- x[3][1] * a,
- x[3][2] * a,
- x[3][3] * a);
- }
- template <class T>
- inline Matrix44<T>
- operator * (T a, const Matrix44<T> &v)
- {
- return v * a;
- }
- template <class T>
- inline const Matrix44<T> &
- Matrix44<T>::operator *= (const Matrix44<T> &v)
- {
- Matrix44 tmp (T (0));
- multiply (*this, v, tmp);
- *this = tmp;
- return *this;
- }
- template <class T>
- inline Matrix44<T>
- Matrix44<T>::operator * (const Matrix44<T> &v) const
- {
- Matrix44 tmp (T (0));
- multiply (*this, v, tmp);
- return tmp;
- }
- template <class T>
- void
- Matrix44<T>::multiply (const Matrix44<T> &a,
- const Matrix44<T> &b,
- Matrix44<T> &c)
- {
- const T * IMATH_RESTRICT ap = &a.x[0][0];
- const T * IMATH_RESTRICT bp = &b.x[0][0];
- T * IMATH_RESTRICT cp = &c.x[0][0];
- T a0, a1, a2, a3;
- a0 = ap[0];
- a1 = ap[1];
- a2 = ap[2];
- a3 = ap[3];
- cp[0] = a0 * bp[0] + a1 * bp[4] + a2 * bp[8] + a3 * bp[12];
- cp[1] = a0 * bp[1] + a1 * bp[5] + a2 * bp[9] + a3 * bp[13];
- cp[2] = a0 * bp[2] + a1 * bp[6] + a2 * bp[10] + a3 * bp[14];
- cp[3] = a0 * bp[3] + a1 * bp[7] + a2 * bp[11] + a3 * bp[15];
- a0 = ap[4];
- a1 = ap[5];
- a2 = ap[6];
- a3 = ap[7];
- cp[4] = a0 * bp[0] + a1 * bp[4] + a2 * bp[8] + a3 * bp[12];
- cp[5] = a0 * bp[1] + a1 * bp[5] + a2 * bp[9] + a3 * bp[13];
- cp[6] = a0 * bp[2] + a1 * bp[6] + a2 * bp[10] + a3 * bp[14];
- cp[7] = a0 * bp[3] + a1 * bp[7] + a2 * bp[11] + a3 * bp[15];
- a0 = ap[8];
- a1 = ap[9];
- a2 = ap[10];
- a3 = ap[11];
- cp[8] = a0 * bp[0] + a1 * bp[4] + a2 * bp[8] + a3 * bp[12];
- cp[9] = a0 * bp[1] + a1 * bp[5] + a2 * bp[9] + a3 * bp[13];
- cp[10] = a0 * bp[2] + a1 * bp[6] + a2 * bp[10] + a3 * bp[14];
- cp[11] = a0 * bp[3] + a1 * bp[7] + a2 * bp[11] + a3 * bp[15];
- a0 = ap[12];
- a1 = ap[13];
- a2 = ap[14];
- a3 = ap[15];
- cp[12] = a0 * bp[0] + a1 * bp[4] + a2 * bp[8] + a3 * bp[12];
- cp[13] = a0 * bp[1] + a1 * bp[5] + a2 * bp[9] + a3 * bp[13];
- cp[14] = a0 * bp[2] + a1 * bp[6] + a2 * bp[10] + a3 * bp[14];
- cp[15] = a0 * bp[3] + a1 * bp[7] + a2 * bp[11] + a3 * bp[15];
- }
- template <class T> template <class S>
- void
- Matrix44<T>::multVecMatrix(const Vec3<S> &src, Vec3<S> &dst) const
- {
- S a, b, c, w;
- a = src[0] * x[0][0] + src[1] * x[1][0] + src[2] * x[2][0] + x[3][0];
- b = src[0] * x[0][1] + src[1] * x[1][1] + src[2] * x[2][1] + x[3][1];
- c = src[0] * x[0][2] + src[1] * x[1][2] + src[2] * x[2][2] + x[3][2];
- w = src[0] * x[0][3] + src[1] * x[1][3] + src[2] * x[2][3] + x[3][3];
- dst.x = a / w;
- dst.y = b / w;
- dst.z = c / w;
- }
- template <class T> template <class S>
- void
- Matrix44<T>::multDirMatrix(const Vec3<S> &src, Vec3<S> &dst) const
- {
- S a, b, c;
- a = src[0] * x[0][0] + src[1] * x[1][0] + src[2] * x[2][0];
- b = src[0] * x[0][1] + src[1] * x[1][1] + src[2] * x[2][1];
- c = src[0] * x[0][2] + src[1] * x[1][2] + src[2] * x[2][2];
- dst.x = a;
- dst.y = b;
- dst.z = c;
- }
- template <class T>
- const Matrix44<T> &
- Matrix44<T>::operator /= (T a)
- {
- x[0][0] /= a;
- x[0][1] /= a;
- x[0][2] /= a;
- x[0][3] /= a;
- x[1][0] /= a;
- x[1][1] /= a;
- x[1][2] /= a;
- x[1][3] /= a;
- x[2][0] /= a;
- x[2][1] /= a;
- x[2][2] /= a;
- x[2][3] /= a;
- x[3][0] /= a;
- x[3][1] /= a;
- x[3][2] /= a;
- x[3][3] /= a;
- return *this;
- }
- template <class T>
- Matrix44<T>
- Matrix44<T>::operator / (T a) const
- {
- return Matrix44 (x[0][0] / a,
- x[0][1] / a,
- x[0][2] / a,
- x[0][3] / a,
- x[1][0] / a,
- x[1][1] / a,
- x[1][2] / a,
- x[1][3] / a,
- x[2][0] / a,
- x[2][1] / a,
- x[2][2] / a,
- x[2][3] / a,
- x[3][0] / a,
- x[3][1] / a,
- x[3][2] / a,
- x[3][3] / a);
- }
- template <class T>
- const Matrix44<T> &
- Matrix44<T>::transpose ()
- {
- Matrix44 tmp (x[0][0],
- x[1][0],
- x[2][0],
- x[3][0],
- x[0][1],
- x[1][1],
- x[2][1],
- x[3][1],
- x[0][2],
- x[1][2],
- x[2][2],
- x[3][2],
- x[0][3],
- x[1][3],
- x[2][3],
- x[3][3]);
- *this = tmp;
- return *this;
- }
- template <class T>
- Matrix44<T>
- Matrix44<T>::transposed () const
- {
- return Matrix44 (x[0][0],
- x[1][0],
- x[2][0],
- x[3][0],
- x[0][1],
- x[1][1],
- x[2][1],
- x[3][1],
- x[0][2],
- x[1][2],
- x[2][2],
- x[3][2],
- x[0][3],
- x[1][3],
- x[2][3],
- x[3][3]);
- }
- template <class T>
- const Matrix44<T> &
- Matrix44<T>::gjInvert (bool singExc)
- {
- *this = gjInverse (singExc);
- return *this;
- }
- template <class T>
- Matrix44<T>
- Matrix44<T>::gjInverse (bool singExc) const
- {
- int i, j, k;
- Matrix44 s;
- Matrix44 t (*this);
- // Forward elimination
- for (i = 0; i < 3 ; i++)
- {
- int pivot = i;
- T pivotsize = t[i][i];
- if (pivotsize < 0)
- pivotsize = -pivotsize;
- for (j = i + 1; j < 4; j++)
- {
- T tmp = t[j][i];
- if (tmp < 0)
- tmp = -tmp;
- if (tmp > pivotsize)
- {
- pivot = j;
- pivotsize = tmp;
- }
- }
- if (pivotsize == 0)
- {
- if (singExc)
- throw ::IMATH_INTERNAL_NAMESPACE::SingMatrixExc ("Cannot invert singular matrix.");
- return Matrix44();
- }
- if (pivot != i)
- {
- for (j = 0; j < 4; j++)
- {
- T tmp;
- tmp = t[i][j];
- t[i][j] = t[pivot][j];
- t[pivot][j] = tmp;
- tmp = s[i][j];
- s[i][j] = s[pivot][j];
- s[pivot][j] = tmp;
- }
- }
- for (j = i + 1; j < 4; j++)
- {
- T f = t[j][i] / t[i][i];
- for (k = 0; k < 4; k++)
- {
- t[j][k] -= f * t[i][k];
- s[j][k] -= f * s[i][k];
- }
- }
- }
- // Backward substitution
- for (i = 3; i >= 0; --i)
- {
- T f;
- if ((f = t[i][i]) == 0)
- {
- if (singExc)
- throw ::IMATH_INTERNAL_NAMESPACE::SingMatrixExc ("Cannot invert singular matrix.");
- return Matrix44();
- }
- for (j = 0; j < 4; j++)
- {
- t[i][j] /= f;
- s[i][j] /= f;
- }
- for (j = 0; j < i; j++)
- {
- f = t[j][i];
- for (k = 0; k < 4; k++)
- {
- t[j][k] -= f * t[i][k];
- s[j][k] -= f * s[i][k];
- }
- }
- }
- return s;
- }
- template <class T>
- const Matrix44<T> &
- Matrix44<T>::invert (bool singExc)
- {
- *this = inverse (singExc);
- return *this;
- }
- template <class T>
- Matrix44<T>
- Matrix44<T>::inverse (bool singExc) const
- {
- if (x[0][3] != 0 || x[1][3] != 0 || x[2][3] != 0 || x[3][3] != 1)
- return gjInverse(singExc);
- Matrix44 s (x[1][1] * x[2][2] - x[2][1] * x[1][2],
- x[2][1] * x[0][2] - x[0][1] * x[2][2],
- x[0][1] * x[1][2] - x[1][1] * x[0][2],
- 0,
- x[2][0] * x[1][2] - x[1][0] * x[2][2],
- x[0][0] * x[2][2] - x[2][0] * x[0][2],
- x[1][0] * x[0][2] - x[0][0] * x[1][2],
- 0,
- x[1][0] * x[2][1] - x[2][0] * x[1][1],
- x[2][0] * x[0][1] - x[0][0] * x[2][1],
- x[0][0] * x[1][1] - x[1][0] * x[0][1],
- 0,
- 0,
- 0,
- 0,
- 1);
- T r = x[0][0] * s[0][0] + x[0][1] * s[1][0] + x[0][2] * s[2][0];
- if (IMATH_INTERNAL_NAMESPACE::abs (r) >= 1)
- {
- for (int i = 0; i < 3; ++i)
- {
- for (int j = 0; j < 3; ++j)
- {
- s[i][j] /= r;
- }
- }
- }
- else
- {
- T mr = IMATH_INTERNAL_NAMESPACE::abs (r) / limits<T>::smallest();
- for (int i = 0; i < 3; ++i)
- {
- for (int j = 0; j < 3; ++j)
- {
- if (mr > IMATH_INTERNAL_NAMESPACE::abs (s[i][j]))
- {
- s[i][j] /= r;
- }
- else
- {
- if (singExc)
- throw SingMatrixExc ("Cannot invert singular matrix.");
- return Matrix44();
- }
- }
- }
- }
- s[3][0] = -x[3][0] * s[0][0] - x[3][1] * s[1][0] - x[3][2] * s[2][0];
- s[3][1] = -x[3][0] * s[0][1] - x[3][1] * s[1][1] - x[3][2] * s[2][1];
- s[3][2] = -x[3][0] * s[0][2] - x[3][1] * s[1][2] - x[3][2] * s[2][2];
- return s;
- }
- template <class T>
- inline T
- Matrix44<T>::fastMinor( const int r0, const int r1, const int r2,
- const int c0, const int c1, const int c2) const
- {
- return x[r0][c0] * (x[r1][c1]*x[r2][c2] - x[r1][c2]*x[r2][c1])
- + x[r0][c1] * (x[r1][c2]*x[r2][c0] - x[r1][c0]*x[r2][c2])
- + x[r0][c2] * (x[r1][c0]*x[r2][c1] - x[r1][c1]*x[r2][c0]);
- }
- template <class T>
- inline T
- Matrix44<T>::minorOf (const int r, const int c) const
- {
- int r0 = 0 + (r < 1 ? 1 : 0);
- int r1 = 1 + (r < 2 ? 1 : 0);
- int r2 = 2 + (r < 3 ? 1 : 0);
- int c0 = 0 + (c < 1 ? 1 : 0);
- int c1 = 1 + (c < 2 ? 1 : 0);
- int c2 = 2 + (c < 3 ? 1 : 0);
- Matrix33<T> working (x[r0][c0],x[r1][c0],x[r2][c0],
- x[r0][c1],x[r1][c1],x[r2][c1],
- x[r0][c2],x[r1][c2],x[r2][c2]);
- return working.determinant();
- }
- template <class T>
- inline T
- Matrix44<T>::determinant () const
- {
- T sum = (T)0;
- if (x[0][3] != 0.) sum -= x[0][3] * fastMinor(1,2,3,0,1,2);
- if (x[1][3] != 0.) sum += x[1][3] * fastMinor(0,2,3,0,1,2);
- if (x[2][3] != 0.) sum -= x[2][3] * fastMinor(0,1,3,0,1,2);
- if (x[3][3] != 0.) sum += x[3][3] * fastMinor(0,1,2,0,1,2);
- return sum;
- }
- template <class T>
- template <class S>
- const Matrix44<T> &
- Matrix44<T>::setEulerAngles (const Vec3<S>& r)
- {
- S cos_rz, sin_rz, cos_ry, sin_ry, cos_rx, sin_rx;
-
- cos_rz = Math<T>::cos (r[2]);
- cos_ry = Math<T>::cos (r[1]);
- cos_rx = Math<T>::cos (r[0]);
-
- sin_rz = Math<T>::sin (r[2]);
- sin_ry = Math<T>::sin (r[1]);
- sin_rx = Math<T>::sin (r[0]);
-
- x[0][0] = cos_rz * cos_ry;
- x[0][1] = sin_rz * cos_ry;
- x[0][2] = -sin_ry;
- x[0][3] = 0;
-
- x[1][0] = -sin_rz * cos_rx + cos_rz * sin_ry * sin_rx;
- x[1][1] = cos_rz * cos_rx + sin_rz * sin_ry * sin_rx;
- x[1][2] = cos_ry * sin_rx;
- x[1][3] = 0;
-
- x[2][0] = sin_rz * sin_rx + cos_rz * sin_ry * cos_rx;
- x[2][1] = -cos_rz * sin_rx + sin_rz * sin_ry * cos_rx;
- x[2][2] = cos_ry * cos_rx;
- x[2][3] = 0;
- x[3][0] = 0;
- x[3][1] = 0;
- x[3][2] = 0;
- x[3][3] = 1;
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix44<T> &
- Matrix44<T>::setAxisAngle (const Vec3<S>& axis, S angle)
- {
- Vec3<S> unit (axis.normalized());
- S sine = Math<T>::sin (angle);
- S cosine = Math<T>::cos (angle);
- x[0][0] = unit[0] * unit[0] * (1 - cosine) + cosine;
- x[0][1] = unit[0] * unit[1] * (1 - cosine) + unit[2] * sine;
- x[0][2] = unit[0] * unit[2] * (1 - cosine) - unit[1] * sine;
- x[0][3] = 0;
- x[1][0] = unit[0] * unit[1] * (1 - cosine) - unit[2] * sine;
- x[1][1] = unit[1] * unit[1] * (1 - cosine) + cosine;
- x[1][2] = unit[1] * unit[2] * (1 - cosine) + unit[0] * sine;
- x[1][3] = 0;
- x[2][0] = unit[0] * unit[2] * (1 - cosine) + unit[1] * sine;
- x[2][1] = unit[1] * unit[2] * (1 - cosine) - unit[0] * sine;
- x[2][2] = unit[2] * unit[2] * (1 - cosine) + cosine;
- x[2][3] = 0;
- x[3][0] = 0;
- x[3][1] = 0;
- x[3][2] = 0;
- x[3][3] = 1;
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix44<T> &
- Matrix44<T>::rotate (const Vec3<S> &r)
- {
- S cos_rz, sin_rz, cos_ry, sin_ry, cos_rx, sin_rx;
- S m00, m01, m02;
- S m10, m11, m12;
- S m20, m21, m22;
- cos_rz = Math<S>::cos (r[2]);
- cos_ry = Math<S>::cos (r[1]);
- cos_rx = Math<S>::cos (r[0]);
-
- sin_rz = Math<S>::sin (r[2]);
- sin_ry = Math<S>::sin (r[1]);
- sin_rx = Math<S>::sin (r[0]);
- m00 = cos_rz * cos_ry;
- m01 = sin_rz * cos_ry;
- m02 = -sin_ry;
- m10 = -sin_rz * cos_rx + cos_rz * sin_ry * sin_rx;
- m11 = cos_rz * cos_rx + sin_rz * sin_ry * sin_rx;
- m12 = cos_ry * sin_rx;
- m20 = -sin_rz * -sin_rx + cos_rz * sin_ry * cos_rx;
- m21 = cos_rz * -sin_rx + sin_rz * sin_ry * cos_rx;
- m22 = cos_ry * cos_rx;
- Matrix44<T> P (*this);
- x[0][0] = P[0][0] * m00 + P[1][0] * m01 + P[2][0] * m02;
- x[0][1] = P[0][1] * m00 + P[1][1] * m01 + P[2][1] * m02;
- x[0][2] = P[0][2] * m00 + P[1][2] * m01 + P[2][2] * m02;
- x[0][3] = P[0][3] * m00 + P[1][3] * m01 + P[2][3] * m02;
- x[1][0] = P[0][0] * m10 + P[1][0] * m11 + P[2][0] * m12;
- x[1][1] = P[0][1] * m10 + P[1][1] * m11 + P[2][1] * m12;
- x[1][2] = P[0][2] * m10 + P[1][2] * m11 + P[2][2] * m12;
- x[1][3] = P[0][3] * m10 + P[1][3] * m11 + P[2][3] * m12;
- x[2][0] = P[0][0] * m20 + P[1][0] * m21 + P[2][0] * m22;
- x[2][1] = P[0][1] * m20 + P[1][1] * m21 + P[2][1] * m22;
- x[2][2] = P[0][2] * m20 + P[1][2] * m21 + P[2][2] * m22;
- x[2][3] = P[0][3] * m20 + P[1][3] * m21 + P[2][3] * m22;
- return *this;
- }
- template <class T>
- const Matrix44<T> &
- Matrix44<T>::setScale (T s)
- {
- memset (x, 0, sizeof (x));
- x[0][0] = s;
- x[1][1] = s;
- x[2][2] = s;
- x[3][3] = 1;
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix44<T> &
- Matrix44<T>::setScale (const Vec3<S> &s)
- {
- memset (x, 0, sizeof (x));
- x[0][0] = s[0];
- x[1][1] = s[1];
- x[2][2] = s[2];
- x[3][3] = 1;
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix44<T> &
- Matrix44<T>::scale (const Vec3<S> &s)
- {
- x[0][0] *= s[0];
- x[0][1] *= s[0];
- x[0][2] *= s[0];
- x[0][3] *= s[0];
- x[1][0] *= s[1];
- x[1][1] *= s[1];
- x[1][2] *= s[1];
- x[1][3] *= s[1];
- x[2][0] *= s[2];
- x[2][1] *= s[2];
- x[2][2] *= s[2];
- x[2][3] *= s[2];
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix44<T> &
- Matrix44<T>::setTranslation (const Vec3<S> &t)
- {
- x[0][0] = 1;
- x[0][1] = 0;
- x[0][2] = 0;
- x[0][3] = 0;
- x[1][0] = 0;
- x[1][1] = 1;
- x[1][2] = 0;
- x[1][3] = 0;
- x[2][0] = 0;
- x[2][1] = 0;
- x[2][2] = 1;
- x[2][3] = 0;
- x[3][0] = t[0];
- x[3][1] = t[1];
- x[3][2] = t[2];
- x[3][3] = 1;
- return *this;
- }
- template <class T>
- inline const Vec3<T>
- Matrix44<T>::translation () const
- {
- return Vec3<T> (x[3][0], x[3][1], x[3][2]);
- }
- template <class T>
- template <class S>
- const Matrix44<T> &
- Matrix44<T>::translate (const Vec3<S> &t)
- {
- x[3][0] += t[0] * x[0][0] + t[1] * x[1][0] + t[2] * x[2][0];
- x[3][1] += t[0] * x[0][1] + t[1] * x[1][1] + t[2] * x[2][1];
- x[3][2] += t[0] * x[0][2] + t[1] * x[1][2] + t[2] * x[2][2];
- x[3][3] += t[0] * x[0][3] + t[1] * x[1][3] + t[2] * x[2][3];
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix44<T> &
- Matrix44<T>::setShear (const Vec3<S> &h)
- {
- x[0][0] = 1;
- x[0][1] = 0;
- x[0][2] = 0;
- x[0][3] = 0;
- x[1][0] = h[0];
- x[1][1] = 1;
- x[1][2] = 0;
- x[1][3] = 0;
- x[2][0] = h[1];
- x[2][1] = h[2];
- x[2][2] = 1;
- x[2][3] = 0;
- x[3][0] = 0;
- x[3][1] = 0;
- x[3][2] = 0;
- x[3][3] = 1;
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix44<T> &
- Matrix44<T>::setShear (const Shear6<S> &h)
- {
- x[0][0] = 1;
- x[0][1] = h.yx;
- x[0][2] = h.zx;
- x[0][3] = 0;
- x[1][0] = h.xy;
- x[1][1] = 1;
- x[1][2] = h.zy;
- x[1][3] = 0;
- x[2][0] = h.xz;
- x[2][1] = h.yz;
- x[2][2] = 1;
- x[2][3] = 0;
- x[3][0] = 0;
- x[3][1] = 0;
- x[3][2] = 0;
- x[3][3] = 1;
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix44<T> &
- Matrix44<T>::shear (const Vec3<S> &h)
- {
- //
- // In this case, we don't need a temp. copy of the matrix
- // because we never use a value on the RHS after we've
- // changed it on the LHS.
- //
- for (int i=0; i < 4; i++)
- {
- x[2][i] += h[1] * x[0][i] + h[2] * x[1][i];
- x[1][i] += h[0] * x[0][i];
- }
- return *this;
- }
- template <class T>
- template <class S>
- const Matrix44<T> &
- Matrix44<T>::shear (const Shear6<S> &h)
- {
- Matrix44<T> P (*this);
- for (int i=0; i < 4; i++)
- {
- x[0][i] = P[0][i] + h.yx * P[1][i] + h.zx * P[2][i];
- x[1][i] = h.xy * P[0][i] + P[1][i] + h.zy * P[2][i];
- x[2][i] = h.xz * P[0][i] + h.yz * P[1][i] + P[2][i];
- }
- return *this;
- }
- //--------------------------------
- // Implementation of stream output
- //--------------------------------
- template <class T>
- std::ostream &
- operator << (std::ostream &s, const Matrix33<T> &m)
- {
- std::ios_base::fmtflags oldFlags = s.flags();
- int width;
- if (s.flags() & std::ios_base::fixed)
- {
- s.setf (std::ios_base::showpoint);
- width = static_cast<int>(s.precision()) + 5;
- }
- else
- {
- s.setf (std::ios_base::scientific);
- s.setf (std::ios_base::showpoint);
- width = static_cast<int>(s.precision()) + 8;
- }
- s << "(" << std::setw (width) << m[0][0] <<
- " " << std::setw (width) << m[0][1] <<
- " " << std::setw (width) << m[0][2] << "\n" <<
- " " << std::setw (width) << m[1][0] <<
- " " << std::setw (width) << m[1][1] <<
- " " << std::setw (width) << m[1][2] << "\n" <<
- " " << std::setw (width) << m[2][0] <<
- " " << std::setw (width) << m[2][1] <<
- " " << std::setw (width) << m[2][2] << ")\n";
- s.flags (oldFlags);
- return s;
- }
- template <class T>
- std::ostream &
- operator << (std::ostream &s, const Matrix44<T> &m)
- {
- std::ios_base::fmtflags oldFlags = s.flags();
- int width;
- if (s.flags() & std::ios_base::fixed)
- {
- s.setf (std::ios_base::showpoint);
- width = static_cast<int>(s.precision()) + 5;
- }
- else
- {
- s.setf (std::ios_base::scientific);
- s.setf (std::ios_base::showpoint);
- width = static_cast<int>(s.precision()) + 8;
- }
- s << "(" << std::setw (width) << m[0][0] <<
- " " << std::setw (width) << m[0][1] <<
- " " << std::setw (width) << m[0][2] <<
- " " << std::setw (width) << m[0][3] << "\n" <<
- " " << std::setw (width) << m[1][0] <<
- " " << std::setw (width) << m[1][1] <<
- " " << std::setw (width) << m[1][2] <<
- " " << std::setw (width) << m[1][3] << "\n" <<
- " " << std::setw (width) << m[2][0] <<
- " " << std::setw (width) << m[2][1] <<
- " " << std::setw (width) << m[2][2] <<
- " " << std::setw (width) << m[2][3] << "\n" <<
- " " << std::setw (width) << m[3][0] <<
- " " << std::setw (width) << m[3][1] <<
- " " << std::setw (width) << m[3][2] <<
- " " << std::setw (width) << m[3][3] << ")\n";
- s.flags (oldFlags);
- return s;
- }
- //---------------------------------------------------------------
- // Implementation of vector-times-matrix multiplication operators
- //---------------------------------------------------------------
- template <class S, class T>
- inline const Vec2<S> &
- operator *= (Vec2<S> &v, const Matrix33<T> &m)
- {
- S x = S(v.x * m[0][0] + v.y * m[1][0] + m[2][0]);
- S y = S(v.x * m[0][1] + v.y * m[1][1] + m[2][1]);
- S w = S(v.x * m[0][2] + v.y * m[1][2] + m[2][2]);
- v.x = x / w;
- v.y = y / w;
- return v;
- }
- template <class S, class T>
- inline Vec2<S>
- operator * (const Vec2<S> &v, const Matrix33<T> &m)
- {
- S x = S(v.x * m[0][0] + v.y * m[1][0] + m[2][0]);
- S y = S(v.x * m[0][1] + v.y * m[1][1] + m[2][1]);
- S w = S(v.x * m[0][2] + v.y * m[1][2] + m[2][2]);
- return Vec2<S> (x / w, y / w);
- }
- template <class S, class T>
- inline const Vec3<S> &
- operator *= (Vec3<S> &v, const Matrix33<T> &m)
- {
- S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0]);
- S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1]);
- S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2]);
- v.x = x;
- v.y = y;
- v.z = z;
- return v;
- }
- template <class S, class T>
- inline Vec3<S>
- operator * (const Vec3<S> &v, const Matrix33<T> &m)
- {
- S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0]);
- S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1]);
- S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2]);
- return Vec3<S> (x, y, z);
- }
- template <class S, class T>
- inline const Vec3<S> &
- operator *= (Vec3<S> &v, const Matrix44<T> &m)
- {
- S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + m[3][0]);
- S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + m[3][1]);
- S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + m[3][2]);
- S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + m[3][3]);
- v.x = x / w;
- v.y = y / w;
- v.z = z / w;
- return v;
- }
- template <class S, class T>
- inline Vec3<S>
- operator * (const Vec3<S> &v, const Matrix44<T> &m)
- {
- S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + m[3][0]);
- S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + m[3][1]);
- S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + m[3][2]);
- S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + m[3][3]);
- return Vec3<S> (x / w, y / w, z / w);
- }
- template <class S, class T>
- inline const Vec4<S> &
- operator *= (Vec4<S> &v, const Matrix44<T> &m)
- {
- S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + v.w * m[3][0]);
- S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + v.w * m[3][1]);
- S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + v.w * m[3][2]);
- S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + v.w * m[3][3]);
- v.x = x;
- v.y = y;
- v.z = z;
- v.w = w;
- return v;
- }
- template <class S, class T>
- inline Vec4<S>
- operator * (const Vec4<S> &v, const Matrix44<T> &m)
- {
- S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + v.w * m[3][0]);
- S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + v.w * m[3][1]);
- S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + v.w * m[3][2]);
- S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + v.w * m[3][3]);
- return Vec4<S> (x, y, z, w);
- }
- IMATH_INTERNAL_NAMESPACE_HEADER_EXIT
- #endif // INCLUDED_IMATHMATRIX_H
|