123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
- // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // @Authors
- // Peng Xiao, pengxiao@multicorewareinc.com
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors as is and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- #if defined(HAVE_OPENCL) && defined(OPENCV_ENABLE_NONFREE)
- namespace opencv_test { namespace {
- static bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2)
- {
- const double maxPtDif = 0.1;
- const double maxSizeDif = 0.1;
- const double maxAngleDif = 0.1;
- const double maxResponseDif = 0.01;
- double dist = cv::norm(p1.pt - p2.pt);
- if (dist < maxPtDif &&
- fabs(p1.size - p2.size) < maxSizeDif &&
- abs(p1.angle - p2.angle) < maxAngleDif &&
- abs(p1.response - p2.response) < maxResponseDif &&
- p1.octave == p2.octave &&
- p1.class_id == p2.class_id)
- {
- return true;
- }
- return false;
- }
- static int getMatchedPointsCount(std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
- {
- std::sort(actual.begin(), actual.end(), perf::comparators::KeypointGreater());
- std::sort(gold.begin(), gold.end(), perf::comparators::KeypointGreater());
- int validCount = 0;
- for (size_t i = 0; i < gold.size(); ++i)
- {
- const cv::KeyPoint& p1 = gold[i];
- const cv::KeyPoint& p2 = actual[i];
- if (keyPointsEquals(p1, p2))
- ++validCount;
- }
- return validCount;
- }
- static int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches)
- {
- int validCount = 0;
- for (size_t i = 0; i < matches.size(); ++i)
- {
- const cv::DMatch& m = matches[i];
- const cv::KeyPoint& p1 = keypoints1[m.queryIdx];
- const cv::KeyPoint& p2 = keypoints2[m.trainIdx];
- if (keyPointsEquals(p1, p2))
- ++validCount;
- }
- return validCount;
- }
- IMPLEMENT_PARAM_CLASS(HessianThreshold, double)
- IMPLEMENT_PARAM_CLASS(Octaves, int)
- IMPLEMENT_PARAM_CLASS(OctaveLayers, int)
- IMPLEMENT_PARAM_CLASS(Extended, bool)
- IMPLEMENT_PARAM_CLASS(Upright, bool)
- PARAM_TEST_CASE(SURF, HessianThreshold, Octaves, OctaveLayers, Extended, Upright)
- {
- bool useOpenCL;
- double hessianThreshold;
- int nOctaves;
- int nOctaveLayers;
- bool extended;
- bool upright;
- virtual void SetUp()
- {
- useOpenCL = cv::ocl::useOpenCL();
- hessianThreshold = get<0>(GetParam());
- nOctaves = get<1>(GetParam());
- nOctaveLayers = get<2>(GetParam());
- extended = get<3>(GetParam());
- upright = get<4>(GetParam());
- }
- virtual void TearDown()
- {
- cv::ocl::setUseOpenCL(useOpenCL);
- }
- };
- TEST_P(SURF, Detector)
- {
- cv::UMat image;
- cv::ocl::setUseOpenCL(true);
- cv::imread(string(cvtest::TS::ptr()->get_data_path()) + "shared/fruits.png", cv::IMREAD_GRAYSCALE).copyTo(image);
- ASSERT_FALSE(image.empty());
- cv::Ptr<cv::xfeatures2d::SURF> surf = cv::xfeatures2d::SURF::create(hessianThreshold, nOctaves, nOctaveLayers, extended, upright);
- std::vector<cv::KeyPoint> keypoints;
- surf->detect(image, keypoints, cv::noArray());
- cv::ocl::setUseOpenCL(false);
- std::vector<cv::KeyPoint> keypoints_gold;
- surf->detect(image, keypoints_gold, cv::noArray());
- ASSERT_EQ(keypoints_gold.size(), keypoints.size());
- int matchedCount = getMatchedPointsCount(keypoints_gold, keypoints);
- double matchedRatio = static_cast<double>(matchedCount) / keypoints_gold.size();
- EXPECT_GT(matchedRatio, 0.99);
- }
- TEST_P(SURF, Descriptor)
- {
- cv::UMat image;
- cv::ocl::setUseOpenCL(true);
- cv::imread(string(cvtest::TS::ptr()->get_data_path()) + "shared/fruits.png", cv::IMREAD_GRAYSCALE).copyTo(image);
- ASSERT_FALSE(image.empty());
- cv::Ptr<cv::xfeatures2d::SURF> surf = cv::xfeatures2d::SURF::create(hessianThreshold, nOctaves, nOctaveLayers, extended, upright);
- std::vector<cv::KeyPoint> keypoints;
- surf->detect(image, keypoints, cv::noArray());
- cv::UMat descriptors;
- surf->detectAndCompute(image, cv::noArray(), keypoints, descriptors, true);
- cv::ocl::setUseOpenCL(false);
- cv::Mat descriptors_gold;
- surf->detectAndCompute(image, cv::noArray(), keypoints, descriptors_gold, true);
- cv::BFMatcher matcher(surf->defaultNorm());
- std::vector<cv::DMatch> matches;
- matcher.match(descriptors_gold, descriptors, matches);
- int matchedCount = getMatchedPointsCount(keypoints, keypoints, matches);
- double matchedRatio = static_cast<double>(matchedCount) / keypoints.size();
- EXPECT_GT(matchedRatio, 0.35);
- }
- INSTANTIATE_TEST_CASE_P(OCL_Features2D, SURF, testing::Combine(
- testing::Values(HessianThreshold(500.0), HessianThreshold(1000.0)),
- testing::Values(Octaves(3), Octaves(4)),
- testing::Values(OctaveLayers(2), OctaveLayers(3)),
- testing::Values(Extended(false), Extended(true)),
- testing::Values(Upright(false), Upright(true))));
- }} // namespace
- #endif // HAVE_OPENCL && OPENCV_ENABLE_NONFREE
|