123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122 |
- #include <opencv2/text.hpp>
- #include <opencv2/highgui.hpp>
- #include <opencv2/imgproc.hpp>
- #include <opencv2/dnn.hpp>
- #include <iostream>
- #include <fstream>
- using namespace cv;
- using namespace std;
- namespace
- {
- void printHelpStr(const string& progFname)
- {
- cout << " Demo of text recognition CNN for text detection." << endl
- << " Max Jaderberg et al.: Reading Text in the Wild with Convolutional Neural Networks, IJCV 2015"<<endl<<endl
- << " Usage: " << progFname << " <output_file> <input_image>" << endl
- << " Caffe Model files (textbox.prototxt, TextBoxes_icdar13.caffemodel)"<<endl
- << " must be in the current directory. See the documentation of text::TextDetectorCNN class to get download links." << endl
- << " Obtaining text recognition Caffe Model files in linux shell:" << endl
- << " wget http://nicolaou.homouniversalis.org/assets/vgg_text/dictnet_vgg.caffemodel" << endl
- << " wget http://nicolaou.homouniversalis.org/assets/vgg_text/dictnet_vgg_deploy.prototxt" << endl
- << " wget http://nicolaou.homouniversalis.org/assets/vgg_text/dictnet_vgg_labels.txt" <<endl << endl;
- }
- bool fileExists (const string& filename)
- {
- ifstream f(filename.c_str());
- return f.good();
- }
- void textbox_draw(Mat src, std::vector<Rect>& groups, std::vector<float>& probs, std::vector<int>& indexes)
- {
- for (size_t i = 0; i < indexes.size(); i++)
- {
- if (src.type() == CV_8UC3)
- {
- Rect currrentBox = groups[indexes[i]];
- rectangle(src, currrentBox, Scalar( 0, 255, 255 ), 2, LINE_AA);
- String label = format("%.2f", probs[indexes[i]]);
- std::cout << "text box: " << currrentBox << " confidence: " << probs[indexes[i]] << "\n";
- int baseLine = 0;
- Size labelSize = getTextSize(label, FONT_HERSHEY_PLAIN, 1, 1, &baseLine);
- int yLeftBottom = std::max(currrentBox.y, labelSize.height);
- rectangle(src, Point(currrentBox.x, yLeftBottom - labelSize.height),
- Point(currrentBox.x + labelSize.width, yLeftBottom + baseLine), Scalar( 255, 255, 255 ), FILLED);
- putText(src, label, Point(currrentBox.x, yLeftBottom), FONT_HERSHEY_PLAIN, 1, Scalar( 0,0,0 ), 1, LINE_AA);
- }
- else
- rectangle(src, groups[i], Scalar( 255 ), 3, 8 );
- }
- }
- }
- int main(int argc, const char * argv[])
- {
- if (argc < 2)
- {
- printHelpStr(argv[0]);
- cout << "Insufiecient parameters. Aborting!" << endl;
- exit(1);
- }
- const string modelArch = "textbox.prototxt";
- const string moddelWeights = "TextBoxes_icdar13.caffemodel";
- if (!fileExists(modelArch) || !fileExists(moddelWeights))
- {
- printHelpStr(argv[0]);
- cout << "Model files not found in the current directory. Aborting!" << endl;
- exit(1);
- }
- Mat image = imread(String(argv[1]), IMREAD_COLOR);
- cout << "Starting Text Box Demo" << endl;
- Ptr<text::TextDetectorCNN> textSpotter =
- text::TextDetectorCNN::create(modelArch, moddelWeights);
- vector<Rect> bbox;
- vector<float> outProbabillities;
- textSpotter->detect(image, bbox, outProbabillities);
- std::vector<int> indexes;
- cv::dnn::NMSBoxes(bbox, outProbabillities, 0.4f, 0.5f, indexes);
- Mat image_copy = image.clone();
- textbox_draw(image_copy, bbox, outProbabillities, indexes);
- imshow("Text detection", image_copy);
- image_copy = image.clone();
- Ptr<text::OCRHolisticWordRecognizer> wordSpotter =
- text::OCRHolisticWordRecognizer::create("dictnet_vgg_deploy.prototxt", "dictnet_vgg.caffemodel", "dictnet_vgg_labels.txt");
- for(size_t i = 0; i < indexes.size(); i++)
- {
- Mat wordImg;
- cvtColor(image(bbox[indexes[i]]), wordImg, COLOR_BGR2GRAY);
- string word;
- vector<float> confs;
- wordSpotter->run(wordImg, word, NULL, NULL, &confs);
- Rect currrentBox = bbox[indexes[i]];
- rectangle(image_copy, currrentBox, Scalar( 0, 255, 255 ), 2, LINE_AA);
- int baseLine = 0;
- Size labelSize = getTextSize(word, FONT_HERSHEY_PLAIN, 1, 1, &baseLine);
- int yLeftBottom = std::max(currrentBox.y, labelSize.height);
- rectangle(image_copy, Point(currrentBox.x, yLeftBottom - labelSize.height),
- Point(currrentBox.x + labelSize.width, yLeftBottom + baseLine), Scalar( 255, 255, 255 ), FILLED);
- putText(image_copy, word, Point(currrentBox.x, yLeftBottom), FONT_HERSHEY_PLAIN, 1, Scalar( 0,0,0 ), 1, LINE_AA);
- }
- imshow("Text recognition", image_copy);
- cout << "Recognition finished. Press any key to exit.\n";
- waitKey();
- return 0;
- }
|