123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include <opencv2/core/utility.hpp>
- #include <opencv2/saliency.hpp>
- #include <opencv2/highgui.hpp>
- #include <iostream>
- using namespace std;
- using namespace cv;
- using namespace saliency;
- static const char* keys =
- { "{@saliency_algorithm | | Saliency algorithm <saliencyAlgorithmType.[saliencyAlgorithmTypeSubType]> }"
- "{@video_name | | video name }"
- "{@start_frame |1| Start frame }"
- "{@training_path |ObjectnessTrainedModel| Path of the folder containing the trained files}" };
- static void help()
- {
- cout << "\nThis example shows the functionality of \"Saliency \""
- "Call:\n"
- "./example_saliency_computeSaliency <saliencyAlgorithmSubType> <video_name> <start_frame> \n"
- << endl;
- }
- int main( int argc, char** argv )
- {
- CommandLineParser parser( argc, argv, keys );
- String saliency_algorithm = parser.get<String>( 0 );
- String video_name = parser.get<String>( 1 );
- int start_frame = parser.get<int>( 2 );
- String training_path = parser.get<String>( 3 );
- if( saliency_algorithm.empty() || video_name.empty() )
- {
- help();
- return -1;
- }
- //open the capture
- VideoCapture cap;
- cap.open( video_name );
- cap.set( CAP_PROP_POS_FRAMES, start_frame );
- if( !cap.isOpened() )
- {
- help();
- cout << "***Could not initialize capturing...***\n";
- cout << "Current parameter's value: \n";
- parser.printMessage();
- return -1;
- }
- Mat frame;
- //instantiates the specific Saliency
- Ptr<Saliency> saliencyAlgorithm;
- Mat binaryMap;
- Mat image;
- cap >> frame;
- if( frame.empty() )
- {
- return 0;
- }
- frame.copyTo( image );
- if( saliency_algorithm.find( "SPECTRAL_RESIDUAL" ) == 0 )
- {
- Mat saliencyMap;
- saliencyAlgorithm = StaticSaliencySpectralResidual::create();
- if( saliencyAlgorithm->computeSaliency( image, saliencyMap ) )
- {
- StaticSaliencySpectralResidual spec;
- spec.computeBinaryMap( saliencyMap, binaryMap );
- imshow( "Saliency Map", saliencyMap );
- imshow( "Original Image", image );
- imshow( "Binary Map", binaryMap );
- waitKey( 0 );
- }
- }
- else if( saliency_algorithm.find( "FINE_GRAINED" ) == 0 )
- {
- Mat saliencyMap;
- saliencyAlgorithm = StaticSaliencyFineGrained::create();
- if( saliencyAlgorithm->computeSaliency( image, saliencyMap ) )
- {
- imshow( "Saliency Map", saliencyMap );
- imshow( "Original Image", image );
- waitKey( 0 );
- }
- }
- else if( saliency_algorithm.find( "BING" ) == 0 )
- {
- if( training_path.empty() )
- {
- cout << "Path of trained files missing! " << endl;
- return -1;
- }
- else
- {
- saliencyAlgorithm = ObjectnessBING::create();
- vector<Vec4i> saliencyMap;
- saliencyAlgorithm.dynamicCast<ObjectnessBING>()->setTrainingPath( training_path );
- saliencyAlgorithm.dynamicCast<ObjectnessBING>()->setBBResDir( "Results" );
- if( saliencyAlgorithm->computeSaliency( image, saliencyMap ) )
- {
- int ndet = int(saliencyMap.size());
- std::cout << "Objectness done " << ndet << std::endl;
- // The result are sorted by objectness. We only use the first maxd boxes here.
- int maxd = 7, step = 255 / maxd, jitter=9; // jitter to separate single rects
- Mat draw = image.clone();
- for (int i = 0; i < std::min(maxd, ndet); i++) {
- Vec4i bb = saliencyMap[i];
- Scalar col = Scalar(((i*step)%255), 50, 255-((i*step)%255));
- Point off(theRNG().uniform(-jitter,jitter), theRNG().uniform(-jitter,jitter));
- rectangle(draw, Point(bb[0]+off.x, bb[1]+off.y), Point(bb[2]+off.x, bb[3]+off.y), col, 2);
- rectangle(draw, Rect(20, 20+i*10, 10,10), col, -1); // mini temperature scale
- }
- imshow("BING", draw);
- waitKey();
- }
- else
- {
- std::cout << "No saliency found for " << video_name << std::endl;
- }
- }
- }
- else if( saliency_algorithm.find( "BinWangApr2014" ) == 0 )
- {
- saliencyAlgorithm = MotionSaliencyBinWangApr2014::create();
- saliencyAlgorithm.dynamicCast<MotionSaliencyBinWangApr2014>()->setImagesize( image.cols, image.rows );
- saliencyAlgorithm.dynamicCast<MotionSaliencyBinWangApr2014>()->init();
- bool paused = false;
- for ( ;; )
- {
- if( !paused )
- {
- cap >> frame;
- if( frame.empty() )
- {
- return 0;
- }
- cvtColor( frame, frame, COLOR_BGR2GRAY );
- Mat saliencyMap;
- saliencyAlgorithm->computeSaliency( frame, saliencyMap );
- imshow( "image", frame );
- imshow( "saliencyMap", saliencyMap * 255 );
- }
- char c = (char) waitKey( 2 );
- if( c == 'q' )
- break;
- if( c == 'p' )
- paused = !paused;
- }
- }
- return 0;
- }
|