123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // Intel License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000, Intel Corporation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of Intel Corporation may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- static string getDataDir() { return TS::ptr()->get_data_path(); }
- static string getRubberWhaleFrame1() { return getDataDir() + "optflow/RubberWhale1.png"; }
- static string getRubberWhaleFrame2() { return getDataDir() + "optflow/RubberWhale2.png"; }
- static string getRubberWhaleGroundTruth() { return getDataDir() + "optflow/RubberWhale.flo"; }
- static bool isFlowCorrect(float u) { return !cvIsNaN(u) && (fabs(u) < 1e9); }
- static bool isFlowCorrect(double u) { return !cvIsNaN(u) && (fabs(u) < 1e9); }
- static float calcRMSE(Mat flow1, Mat flow2)
- {
- float sum = 0;
- int counter = 0;
- const int rows = flow1.rows;
- const int cols = flow1.cols;
- for (int y = 0; y < rows; ++y)
- {
- for (int x = 0; x < cols; ++x)
- {
- Vec2f flow1_at_point = flow1.at<Vec2f>(y, x);
- Vec2f flow2_at_point = flow2.at<Vec2f>(y, x);
- float u1 = flow1_at_point[0];
- float v1 = flow1_at_point[1];
- float u2 = flow2_at_point[0];
- float v2 = flow2_at_point[1];
- if (isFlowCorrect(u1) && isFlowCorrect(u2) && isFlowCorrect(v1) && isFlowCorrect(v2))
- {
- sum += (u1 - u2) * (u1 - u2) + (v1 - v2) * (v1 - v2);
- counter++;
- }
- }
- }
- return (float)sqrt(sum / (1e-9 + counter));
- }
- static float calcRMSE(vector<Point2f> prevPts, vector<Point2f> currPts, Mat flow)
- {
- vector<float> ee;
- for (unsigned int n = 0; n < prevPts.size(); n++)
- {
- Point2f gtFlow = flow.at<Point2f>(prevPts[n]);
- if (isFlowCorrect(gtFlow.x) && isFlowCorrect(gtFlow.y))
- {
- Point2f diffFlow = (currPts[n] - prevPts[n]) - gtFlow;
- ee.push_back(sqrt(diffFlow.x * diffFlow.x + diffFlow.y * diffFlow.y));
- }
- }
- return static_cast<float>(mean(ee).val[0]);
- }
- static float calcAvgEPE(vector< pair<Point2i, Point2i> > corr, Mat flow)
- {
- double sum = 0;
- int counter = 0;
- for (size_t i = 0; i < corr.size(); ++i)
- {
- Vec2f flow1_at_point = Point2f(corr[i].second - corr[i].first);
- Vec2f flow2_at_point = flow.at<Vec2f>(corr[i].first.y, corr[i].first.x);
- double u1 = (double)flow1_at_point[0];
- double v1 = (double)flow1_at_point[1];
- double u2 = (double)flow2_at_point[0];
- double v2 = (double)flow2_at_point[1];
- if (isFlowCorrect(u1) && isFlowCorrect(u2) && isFlowCorrect(v1) && isFlowCorrect(v2))
- {
- sum += sqrt((u1 - u2) * (u1 - u2) + (v1 - v2) * (v1 - v2));
- counter++;
- }
- }
- return (float)(sum / counter);
- }
- bool readRubberWhale(Mat &dst_frame_1, Mat &dst_frame_2, Mat &dst_GT)
- {
- string frame1_path = getRubberWhaleFrame1();
- string frame2_path = getRubberWhaleFrame2();
- string gt_flow_path = getRubberWhaleGroundTruth();
- // removing space may be an issue on windows machines
- frame1_path.erase(std::remove_if(frame1_path.begin(), frame1_path.end(), isspace), frame1_path.end());
- frame2_path.erase(std::remove_if(frame2_path.begin(), frame2_path.end(), isspace), frame2_path.end());
- gt_flow_path.erase(std::remove_if(gt_flow_path.begin(), gt_flow_path.end(), isspace), gt_flow_path.end());
- dst_frame_1 = imread(frame1_path);
- dst_frame_2 = imread(frame2_path);
- dst_GT = readOpticalFlow(gt_flow_path);
- if (dst_frame_1.empty() || dst_frame_2.empty() || dst_GT.empty())
- return false;
- else
- return true;
- }
- TEST(DenseOpticalFlow_SimpleFlow, ReferenceAccuracy)
- {
- Mat frame1, frame2, GT;
- ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));
- float target_RMSE = 0.37f;
- Mat flow;
- Ptr<DenseOpticalFlow> algo;
- algo = createOptFlow_SimpleFlow();
- algo->calc(frame1, frame2, flow);
- ASSERT_EQ(GT.rows, flow.rows);
- ASSERT_EQ(GT.cols, flow.cols);
- EXPECT_LE(calcRMSE(GT, flow), target_RMSE);
- }
- TEST(DenseOpticalFlow_DeepFlow, ReferenceAccuracy)
- {
- Mat frame1, frame2, GT;
- ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));
- float target_RMSE = 0.35f;
- cvtColor(frame1, frame1, COLOR_BGR2GRAY);
- cvtColor(frame2, frame2, COLOR_BGR2GRAY);
- Mat flow;
- Ptr<DenseOpticalFlow> algo;
- algo = createOptFlow_DeepFlow();
- algo->calc(frame1, frame2, flow);
- ASSERT_EQ(GT.rows, flow.rows);
- ASSERT_EQ(GT.cols, flow.cols);
- EXPECT_LE(calcRMSE(GT, flow), target_RMSE);
- }
- TEST(SparseOpticalFlow, ReferenceAccuracy)
- {
- // with the following test each invoker class should be tested once
- Mat frame1, frame2, GT;
- ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));
- vector<Point2f> prevPts, currPts;
- for (int r = 0; r < frame1.rows; r+=10)
- {
- for (int c = 0; c < frame1.cols; c+=10)
- {
- prevPts.push_back(Point2f(static_cast<float>(c), static_cast<float>(r)));
- }
- }
- vector<uchar> status(prevPts.size());
- vector<float> err(prevPts.size());
- Ptr<SparseRLOFOpticalFlow> algo = SparseRLOFOpticalFlow::create();
- algo->setForwardBackward(0.0f);
- Ptr<RLOFOpticalFlowParameter> param = Ptr<RLOFOpticalFlowParameter>(new RLOFOpticalFlowParameter);
- param->supportRegionType = SR_CROSS;
- param->useIlluminationModel = true;
- param->solverType = ST_BILINEAR;
- param->setUseMEstimator(true);
- algo->setRLOFOpticalFlowParameter(param);
- algo->calc(frame1, frame2, prevPts, currPts, status, err);
- EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.3f);
- param->solverType = ST_STANDART;
- algo->setRLOFOpticalFlowParameter(param);
- algo->calc(frame1, frame2, prevPts, currPts, status, err);
- EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.34f);
- param->useIlluminationModel = false;
- param->solverType = ST_BILINEAR;
- algo->setRLOFOpticalFlowParameter(param);
- algo->calc(frame1, frame2, prevPts, currPts, status, err);
- EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.27f);
- param->solverType = ST_STANDART;
- algo->setRLOFOpticalFlowParameter(param);
- algo->calc(frame1, frame2, prevPts, currPts, status, err);
- EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.27f);
- param->setUseMEstimator(false);
- param->useIlluminationModel = true;
- param->solverType = ST_BILINEAR;
- algo->setRLOFOpticalFlowParameter(param);
- algo->calc(frame1, frame2, prevPts, currPts, status, err);
- EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.28f);
- param->solverType = ST_STANDART;
- algo->setRLOFOpticalFlowParameter(param);
- algo->calc(frame1, frame2, prevPts, currPts, status, err);
- EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.28f);
- param->useIlluminationModel = false;
- param->solverType = ST_BILINEAR;
- algo->setRLOFOpticalFlowParameter(param);
- algo->calc(frame1, frame2, prevPts, currPts, status, err);
- EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.80f);
- param->solverType = ST_STANDART;
- algo->setRLOFOpticalFlowParameter(param);
- algo->calc(frame1, frame2, prevPts, currPts, status, err);
- EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.28f);
- }
- TEST(DenseOpticalFlow_RLOF, ReferenceAccuracy)
- {
- Mat frame1, frame2, GT;
- ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));
- Mat flow;
- Ptr<DenseRLOFOpticalFlow> algo = DenseRLOFOpticalFlow::create();
- Ptr<RLOFOpticalFlowParameter> param = Ptr<RLOFOpticalFlowParameter>(new RLOFOpticalFlowParameter);
- param->setUseMEstimator(true);
- param->supportRegionType = SR_CROSS;
- param->solverType = ST_BILINEAR;
- algo->setRLOFOpticalFlowParameter(param);
- algo->setForwardBackward(1.0f);
- algo->setGridStep(cv::Size(4, 4));
- algo->setInterpolation(INTERP_EPIC);
- algo->calc(frame1, frame2, flow);
- ASSERT_EQ(GT.rows, flow.rows);
- ASSERT_EQ(GT.cols, flow.cols);
- EXPECT_LE(calcRMSE(GT, flow), 0.46f);
- algo->setInterpolation(INTERP_GEO);
- algo->calc(frame1, frame2, flow);
- ASSERT_EQ(GT.rows, flow.rows);
- ASSERT_EQ(GT.cols, flow.cols);
- EXPECT_LE(calcRMSE(GT, flow), 0.55f);
- }
- TEST(DenseOpticalFlow_SparseToDenseFlow, ReferenceAccuracy)
- {
- Mat frame1, frame2, GT;
- ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));
- float target_RMSE = 0.52f;
- Mat flow;
- Ptr<DenseOpticalFlow> algo;
- algo = createOptFlow_SparseToDense();
- algo->calc(frame1, frame2, flow);
- ASSERT_EQ(GT.rows, flow.rows);
- ASSERT_EQ(GT.cols, flow.cols);
- EXPECT_LE(calcRMSE(GT, flow), target_RMSE);
- }
- TEST(DenseOpticalFlow_PCAFlow, ReferenceAccuracy)
- {
- Mat frame1, frame2, GT;
- ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));
- const float target_RMSE = 0.55f;
- Mat flow;
- Ptr<DenseOpticalFlow> algo = createOptFlow_PCAFlow();
- algo->calc(frame1, frame2, flow);
- ASSERT_EQ(GT.rows, flow.rows);
- ASSERT_EQ(GT.cols, flow.cols);
- EXPECT_LE(calcRMSE(GT, flow), target_RMSE);
- }
- TEST(DenseOpticalFlow_GlobalPatchColliderDCT, ReferenceAccuracy)
- {
- Mat frame1, frame2, GT;
- ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));
- const Size sz = frame1.size() / 2;
- frame1 = frame1(Rect(0, 0, sz.width, sz.height));
- frame2 = frame2(Rect(0, 0, sz.width, sz.height));
- GT = GT(Rect(0, 0, sz.width, sz.height));
- vector<Mat> img1, img2, gt;
- vector< pair<Point2i, Point2i> > corr;
- img1.push_back(frame1);
- img2.push_back(frame2);
- gt.push_back(GT);
- Ptr< GPCForest<5> > forest = GPCForest<5>::create();
- forest->train(img1, img2, gt, GPCTrainingParams(8, 3, GPC_DESCRIPTOR_DCT, false));
- forest->findCorrespondences(frame1, frame2, corr);
- ASSERT_LE(7500U, corr.size());
- ASSERT_LE(calcAvgEPE(corr, GT), 0.5f);
- }
- TEST(DenseOpticalFlow_GlobalPatchColliderWHT, ReferenceAccuracy)
- {
- Mat frame1, frame2, GT;
- ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));
- const Size sz = frame1.size() / 2;
- frame1 = frame1(Rect(0, 0, sz.width, sz.height));
- frame2 = frame2(Rect(0, 0, sz.width, sz.height));
- GT = GT(Rect(0, 0, sz.width, sz.height));
- vector<Mat> img1, img2, gt;
- vector< pair<Point2i, Point2i> > corr;
- img1.push_back(frame1);
- img2.push_back(frame2);
- gt.push_back(GT);
- Ptr< GPCForest<5> > forest = GPCForest<5>::create();
- forest->train(img1, img2, gt, GPCTrainingParams(8, 3, GPC_DESCRIPTOR_WHT, false));
- forest->findCorrespondences(frame1, frame2, corr);
- ASSERT_LE(7000U, corr.size());
- ASSERT_LE(calcAvgEPE(corr, GT), 0.5f);
- }
- }} // namespace
|