1234567891011121314151617181920212223242526272829 |
- function detect(img::OpenCV.InputArray, cascade)
- rects = OpenCV.detectMultiScale(cascade, img)
- return (rects[1].x, rects[1].y, rects[1].width+rects[1].x, rects[1].height+rects[1].y)
- end
- function IOU(boxA, boxB)
- xA = max(boxA[1], boxB[1])
- yA = max(boxA[2], boxB[2])
- xB = min(boxA[3], boxB[3])
- yB = min(boxA[4], boxB[4])
- interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1)
- boxAArea = (boxA[3] - boxA[1] + 1) * (boxA[4] - boxA[2] + 1)
- boxBArea = (boxB[3] - boxB[1] + 1) * (boxB[4] - boxB[2] + 1)
- iou = interArea / float(boxAArea + boxBArea - interArea)
- return iou
- end
- cascade = OpenCV.CascadeClassifier(joinpath(test_dir, "cascadeandhog", "cascades", "haarcascade_frontalface_alt.xml"))
- img = OpenCV.imread(joinpath(test_dir, "cascadeandhog", "images", "mona-lisa.png"), OpenCV.IMREAD_GRAYSCALE)
- rect = detect(img, cascade)
- expected_rect = (164,119,306,261)
- @test IOU(rect, expected_rect) > 0.95
- print("objdetect test passed\n")
|