123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201 |
- /*
- * Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
- * Released to public domain under terms of the BSD Simplified license.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * * Neither the name of the organization nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * See <http://www.opensource.org/licenses/bsd-license>
- */
- #include "opencv2/core.hpp"
- #include "opencv2/face.hpp"
- #include "opencv2/highgui.hpp"
- #include "opencv2/imgproc.hpp"
- #include <iostream>
- #include <fstream>
- #include <sstream>
- using namespace cv;
- using namespace cv::face;
- using namespace std;
- static Mat norm_0_255(InputArray _src) {
- Mat src = _src.getMat();
- // Create and return normalized image:
- Mat dst;
- switch(src.channels()) {
- case 1:
- cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
- break;
- case 3:
- cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC3);
- break;
- default:
- src.copyTo(dst);
- break;
- }
- return dst;
- }
- static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') {
- std::ifstream file(filename.c_str(), ifstream::in);
- if (!file) {
- string error_message = "No valid input file was given, please check the given filename.";
- CV_Error(Error::StsBadArg, error_message);
- }
- string line, path, classlabel;
- while (getline(file, line)) {
- stringstream liness(line);
- getline(liness, path, separator);
- getline(liness, classlabel);
- if(!path.empty() && !classlabel.empty()) {
- images.push_back(imread(path, 0));
- labels.push_back(atoi(classlabel.c_str()));
- }
- }
- }
- int main(int argc, const char *argv[]) {
- // Check for valid command line arguments, print usage
- // if no arguments were given.
- if (argc < 2) {
- cout << "usage: " << argv[0] << " <csv.ext> <output_folder> " << endl;
- exit(1);
- }
- string output_folder = ".";
- if (argc == 3) {
- output_folder = string(argv[2]);
- }
- // Get the path to your CSV.
- string fn_csv = string(argv[1]);
- // These vectors hold the images and corresponding labels.
- vector<Mat> images;
- vector<int> labels;
- // Read in the data. This can fail if no valid
- // input filename is given.
- try {
- read_csv(fn_csv, images, labels);
- } catch (const cv::Exception& e) {
- cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
- // nothing more we can do
- exit(1);
- }
- // Quit if there are not enough images for this demo.
- if(images.size() <= 1) {
- string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
- CV_Error(Error::StsError, error_message);
- }
- // Get the height from the first image. We'll need this
- // later in code to reshape the images to their original
- // size:
- int height = images[0].rows;
- // The following lines simply get the last images from
- // your dataset and remove it from the vector. This is
- // done, so that the training data (which we learn the
- // cv::FaceRecognizer on) and the test data we test
- // the model with, do not overlap.
- Mat testSample = images[images.size() - 1];
- int testLabel = labels[labels.size() - 1];
- images.pop_back();
- labels.pop_back();
- // The following lines create an Eigenfaces model for
- // face recognition and train it with the images and
- // labels read from the given CSV file.
- // This here is a full PCA, if you just want to keep
- // 10 principal components (read Eigenfaces), then call
- // the factory method like this:
- //
- // cv::face::EigenFaceRecognizer::create(10);
- //
- // If you want to create a FaceRecognizer with a
- // confidence threshold (e.g. 123.0), call it with:
- //
- // cv::face::EigenFaceRecognizer::create(10, 123.0);
- //
- // If you want to use _all_ Eigenfaces and have a threshold,
- // then call the method like this:
- //
- // cv::face::EigenFaceRecognizer::create(0, 123.0);
- //
- Ptr<EigenFaceRecognizer> model0 = EigenFaceRecognizer::create();
- model0->train(images, labels);
- // save the model to eigenfaces_at.yaml
- model0->save("eigenfaces_at.yml");
- //
- //
- // Now create a new Eigenfaces Recognizer
- //
- Ptr<EigenFaceRecognizer> model1 = Algorithm::load<EigenFaceRecognizer>("eigenfaces_at.yml");
- // The following line predicts the label of a given
- // test image:
- int predictedLabel = model1->predict(testSample);
- //
- // To get the confidence of a prediction call the model with:
- //
- // int predictedLabel = -1;
- // double confidence = 0.0;
- // model->predict(testSample, predictedLabel, confidence);
- //
- string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
- cout << result_message << endl;
- // Here is how to get the eigenvalues of this Eigenfaces model:
- Mat eigenvalues = model1->getEigenValues();
- // And we can do the same to display the Eigenvectors (read Eigenfaces):
- Mat W = model1->getEigenVectors();
- // Get the sample mean from the training data
- Mat mean = model1->getMean();
- // Display or save:
- if(argc == 2) {
- imshow("mean", norm_0_255(mean.reshape(1, images[0].rows)));
- } else {
- imwrite(format("%s/mean.png", output_folder.c_str()), norm_0_255(mean.reshape(1, images[0].rows)));
- }
- // Display or save the Eigenfaces:
- for (int i = 0; i < min(10, W.cols); i++) {
- string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i));
- cout << msg << endl;
- // get eigenvector #i
- Mat ev = W.col(i).clone();
- // Reshape to original size & normalize to [0...255] for imshow.
- Mat grayscale = norm_0_255(ev.reshape(1, height));
- // Show the image & apply a Jet colormap for better sensing.
- Mat cgrayscale;
- applyColorMap(grayscale, cgrayscale, COLORMAP_JET);
- // Display or save:
- if(argc == 2) {
- imshow(format("eigenface_%d", i), cgrayscale);
- } else {
- imwrite(format("%s/eigenface_%d.png", output_folder.c_str(), i), norm_0_255(cgrayscale));
- }
- }
- // Display or save the image reconstruction at some predefined steps:
- for(int num_components = 10; num_components < 300; num_components+=15) {
- // slice the eigenvectors from the model
- Mat evs = Mat(W, Range::all(), Range(0, num_components));
- Mat projection = LDA::subspaceProject(evs, mean, images[0].reshape(1,1));
- Mat reconstruction = LDA::subspaceReconstruct(evs, mean, projection);
- // Normalize the result:
- reconstruction = norm_0_255(reconstruction.reshape(1, images[0].rows));
- // Display or save:
- if(argc == 2) {
- imshow(format("eigenface_reconstruction_%d", num_components), reconstruction);
- } else {
- imwrite(format("%s/eigenface_reconstruction_%d.png", output_folder.c_str(), num_components), reconstruction);
- }
- }
- // Display if we are not writing to an output folder:
- if(argc == 2) {
- waitKey(0);
- }
- return 0;
- }
|