123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281 |
- #include <iostream>
- #include <fstream>
- #include "opencv2/core.hpp"
- #include <opencv2/core/utility.hpp>
- #include "opencv2/highgui.hpp"
- #include "opencv2/cudaoptflow.hpp"
- #include "opencv2/cudaarithm.hpp"
- using namespace std;
- using namespace cv;
- using namespace cv::cuda;
- inline bool isFlowCorrect(Point2f u)
- {
- return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9;
- }
- static Vec3b computeColor(float fx, float fy)
- {
- static bool first = true;
- // relative lengths of color transitions:
- // these are chosen based on perceptual similarity
- // (e.g. one can distinguish more shades between red and yellow
- // than between yellow and green)
- const int RY = 15;
- const int YG = 6;
- const int GC = 4;
- const int CB = 11;
- const int BM = 13;
- const int MR = 6;
- const int NCOLS = RY + YG + GC + CB + BM + MR;
- static Vec3i colorWheel[NCOLS];
- if (first)
- {
- int k = 0;
- for (int i = 0; i < RY; ++i, ++k)
- colorWheel[k] = Vec3i(255, 255 * i / RY, 0);
- for (int i = 0; i < YG; ++i, ++k)
- colorWheel[k] = Vec3i(255 - 255 * i / YG, 255, 0);
- for (int i = 0; i < GC; ++i, ++k)
- colorWheel[k] = Vec3i(0, 255, 255 * i / GC);
- for (int i = 0; i < CB; ++i, ++k)
- colorWheel[k] = Vec3i(0, 255 - 255 * i / CB, 255);
- for (int i = 0; i < BM; ++i, ++k)
- colorWheel[k] = Vec3i(255 * i / BM, 0, 255);
- for (int i = 0; i < MR; ++i, ++k)
- colorWheel[k] = Vec3i(255, 0, 255 - 255 * i / MR);
- first = false;
- }
- const float rad = sqrt(fx * fx + fy * fy);
- const float a = atan2(-fy, -fx) / (float)CV_PI;
- const float fk = (a + 1.0f) / 2.0f * (NCOLS - 1);
- const int k0 = static_cast<int>(fk);
- const int k1 = (k0 + 1) % NCOLS;
- const float f = fk - k0;
- Vec3b pix;
- for (int b = 0; b < 3; b++)
- {
- const float col0 = colorWheel[k0][b] / 255.0f;
- const float col1 = colorWheel[k1][b] / 255.0f;
- float col = (1 - f) * col0 + f * col1;
- if (rad <= 1)
- col = 1 - rad * (1 - col); // increase saturation with radius
- else
- col *= .75; // out of range
- pix[2 - b] = static_cast<uchar>(255.0 * col);
- }
- return pix;
- }
- static void drawOpticalFlow(const Mat_<float>& flowx, const Mat_<float>& flowy, Mat& dst, float maxmotion = -1)
- {
- dst.create(flowx.size(), CV_8UC3);
- dst.setTo(Scalar::all(0));
- // determine motion range:
- float maxrad = maxmotion;
- if (maxmotion <= 0)
- {
- maxrad = 1;
- for (int y = 0; y < flowx.rows; ++y)
- {
- for (int x = 0; x < flowx.cols; ++x)
- {
- Point2f u(flowx(y, x), flowy(y, x));
- if (!isFlowCorrect(u))
- continue;
- maxrad = max(maxrad, sqrt(u.x * u.x + u.y * u.y));
- }
- }
- }
- for (int y = 0; y < flowx.rows; ++y)
- {
- for (int x = 0; x < flowx.cols; ++x)
- {
- Point2f u(flowx(y, x), flowy(y, x));
- if (isFlowCorrect(u))
- dst.at<Vec3b>(y, x) = computeColor(u.x / maxrad, u.y / maxrad);
- }
- }
- }
- static void showFlow(const char* name, const GpuMat& d_flow)
- {
- GpuMat planes[2];
- cuda::split(d_flow, planes);
- Mat flowx(planes[0]);
- Mat flowy(planes[1]);
- Mat out;
- drawOpticalFlow(flowx, flowy, out, 10);
- imshow(name, out);
- }
- int main(int argc, const char* argv[])
- {
- string filename1, filename2;
- if (argc < 3)
- {
- cerr << "Usage : " << argv[0] << " <frame0> <frame1>" << endl;
- filename1 = "../data/basketball1.png";
- filename2 = "../data/basketball2.png";
- }
- else
- {
- filename1 = argv[1];
- filename2 = argv[2];
- }
- Mat frame0 = imread(filename1, IMREAD_GRAYSCALE);
- Mat frame1 = imread(filename2, IMREAD_GRAYSCALE);
- if (frame0.empty())
- {
- cerr << "Can't open image [" << filename1 << "]" << endl;
- return -1;
- }
- if (frame1.empty())
- {
- cerr << "Can't open image [" << filename2 << "]" << endl;
- return -1;
- }
- if (frame1.size() != frame0.size())
- {
- cerr << "Images should be of equal sizes" << endl;
- return -1;
- }
- GpuMat d_frame0(frame0);
- GpuMat d_frame1(frame1);
- GpuMat d_flow(frame0.size(), CV_32FC2), d_flowxy;
- Stream inputStream, outputStream;
- Ptr<cuda::BroxOpticalFlow> brox = cuda::BroxOpticalFlow::create(0.197f, 50.0f, 0.8f, 10, 77, 10);
- Ptr<cuda::DensePyrLKOpticalFlow> lk = cuda::DensePyrLKOpticalFlow::create(Size(7, 7));
- Ptr<cuda::FarnebackOpticalFlow> farn = cuda::FarnebackOpticalFlow::create();
- Ptr<cuda::OpticalFlowDual_TVL1> tvl1 = cuda::OpticalFlowDual_TVL1::create();
- Ptr<cuda::NvidiaOpticalFlow_1_0> nvof_1_0 = cuda::NvidiaOpticalFlow_1_0::create(frame0.size(),
- NvidiaOpticalFlow_1_0::NVIDIA_OF_PERF_LEVEL::NV_OF_PERF_LEVEL_FAST, false, false, false, 0, inputStream, outputStream);
- Ptr<cuda::NvidiaOpticalFlow_2_0> nvof_2_0 = cuda::NvidiaOpticalFlow_2_0::create(frame0.size(),
- NvidiaOpticalFlow_2_0::NVIDIA_OF_PERF_LEVEL::NV_OF_PERF_LEVEL_FAST, NvidiaOpticalFlow_2_0::NVIDIA_OF_OUTPUT_VECTOR_GRID_SIZE::NV_OF_OUTPUT_VECTOR_GRID_SIZE_1,
- NvidiaOpticalFlow_2_0::NVIDIA_OF_HINT_VECTOR_GRID_SIZE::NV_OF_HINT_VECTOR_GRID_SIZE_UNDEFINED, false, false, false, 0, inputStream, outputStream);
- {
- GpuMat d_frame0f;
- GpuMat d_frame1f;
- d_frame0.convertTo(d_frame0f, CV_32F, 1.0 / 255.0);
- d_frame1.convertTo(d_frame1f, CV_32F, 1.0 / 255.0);
- const int64 start = getTickCount();
- brox->calc(d_frame0f, d_frame1f, d_flow);
- const double timeSec = (getTickCount() - start) / getTickFrequency();
- cout << "Brox : " << timeSec << " sec" << endl;
- showFlow("Brox", d_flow);
- }
- {
- const int64 start = getTickCount();
- lk->calc(d_frame0, d_frame1, d_flow);
- const double timeSec = (getTickCount() - start) / getTickFrequency();
- cout << "LK : " << timeSec << " sec" << endl;
- showFlow("LK", d_flow);
- }
- {
- const int64 start = getTickCount();
- farn->calc(d_frame0, d_frame1, d_flow);
- const double timeSec = (getTickCount() - start) / getTickFrequency();
- cout << "Farn : " << timeSec << " sec" << endl;
- showFlow("Farn", d_flow);
- }
- {
- const int64 start = getTickCount();
- tvl1->calc(d_frame0, d_frame1, d_flow);
- const double timeSec = (getTickCount() - start) / getTickFrequency();
- cout << "TVL1 : " << timeSec << " sec" << endl;
- showFlow("TVL1", d_flow);
- }
- {
- //The timing displayed below includes the time taken to copy the input buffers to the OF CUDA input buffers
- //and to copy the output buffers from the OF CUDA output buffer to the output buffer.
- //Hence it is expected to be more than what is displayed in the NVIDIA Optical Flow SDK documentation.
- const int64 start = getTickCount();
- nvof_1_0->calc(d_frame0, d_frame1, d_flowxy);
- const double timeSec = (getTickCount() - start) / getTickFrequency();
- cout << "NVIDIAOpticalFlow_1_0 : " << timeSec << " sec" << endl;
- nvof_1_0->upSampler(d_flowxy, frame0.size(), nvof_1_0->getGridSize(), d_flow);
- showFlow("NVIDIAOpticalFlow_1_0", d_flow);
- nvof_1_0->collectGarbage();
- }
- {
- //The timing displayed below includes the time taken to copy the input buffers to the OF CUDA input buffers
- //and to copy the output buffers from the OF CUDA output buffer to the output buffer.
- //Hence it is expected to be more than what is displayed in the NVIDIA Optical Flow SDK documentation.
- const int64 start = getTickCount();
- nvof_2_0->calc(d_frame0, d_frame1, d_flowxy);
- const double timeSec = (getTickCount() - start) / getTickFrequency();
- cout << "NVIDIAOpticalFlow_2_0 : " << timeSec << " sec" << endl;
- nvof_2_0->convertToFloat(d_flowxy, d_flow);
- showFlow("NVIDIAOpticalFlow_2_0", d_flow);
- nvof_2_0->collectGarbage();
- }
- imshow("Frame 0", frame0);
- imshow("Frame 1", frame1);
- waitKey();
- return 0;
- }
|