12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- #!/usr/bin/env python
- '''
- Simple example of stereo image matching and point cloud generation.
- Resulting .ply file cam be easily viewed using MeshLab ( http://meshlab.sourceforge.net/ )
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import numpy as np
- import cv2 as cv
- ply_header = '''ply
- format ascii 1.0
- element vertex %(vert_num)d
- property float x
- property float y
- property float z
- property uchar red
- property uchar green
- property uchar blue
- end_header
- '''
- def write_ply(fn, verts, colors):
- verts = verts.reshape(-1, 3)
- colors = colors.reshape(-1, 3)
- verts = np.hstack([verts, colors])
- with open(fn, 'wb') as f:
- f.write((ply_header % dict(vert_num=len(verts))).encode('utf-8'))
- np.savetxt(f, verts, fmt='%f %f %f %d %d %d ')
- def main():
- print('loading images...')
- imgL = cv.pyrDown(cv.imread(cv.samples.findFile('aloeL.jpg'))) # downscale images for faster processing
- imgR = cv.pyrDown(cv.imread(cv.samples.findFile('aloeR.jpg')))
- # disparity range is tuned for 'aloe' image pair
- window_size = 3
- min_disp = 16
- num_disp = 112-min_disp
- stereo = cv.StereoSGBM_create(minDisparity = min_disp,
- numDisparities = num_disp,
- blockSize = 16,
- P1 = 8*3*window_size**2,
- P2 = 32*3*window_size**2,
- disp12MaxDiff = 1,
- uniquenessRatio = 10,
- speckleWindowSize = 100,
- speckleRange = 32
- )
- print('computing disparity...')
- disp = stereo.compute(imgL, imgR).astype(np.float32) / 16.0
- print('generating 3d point cloud...',)
- h, w = imgL.shape[:2]
- f = 0.8*w # guess for focal length
- Q = np.float32([[1, 0, 0, -0.5*w],
- [0,-1, 0, 0.5*h], # turn points 180 deg around x-axis,
- [0, 0, 0, -f], # so that y-axis looks up
- [0, 0, 1, 0]])
- points = cv.reprojectImageTo3D(disp, Q)
- colors = cv.cvtColor(imgL, cv.COLOR_BGR2RGB)
- mask = disp > disp.min()
- out_points = points[mask]
- out_colors = colors[mask]
- out_fn = 'out.ply'
- write_ply(out_fn, out_points, out_colors)
- print('%s saved' % out_fn)
- cv.imshow('left', imgL)
- cv.imshow('disparity', (disp-min_disp)/num_disp)
- cv.waitKey()
- print('Done')
- if __name__ == '__main__':
- print(__doc__)
- main()
- cv.destroyAllWindows()
|