123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- #!/usr/bin/env python
- """
- Tracking of rotating point.
- Point moves in a circle and is characterized by a 1D state.
- state_k+1 = state_k + speed + process_noise N(0, 1e-5)
- The speed is constant.
- Both state and measurements vectors are 1D (a point angle),
- Measurement is the real state + gaussian noise N(0, 1e-1).
- The real and the measured points are connected with red line segment,
- the real and the estimated points are connected with yellow line segment,
- the real and the corrected estimated points are connected with green line segment.
- (if Kalman filter works correctly,
- the yellow segment should be shorter than the red one and
- the green segment should be shorter than the yellow one).
- Pressing any key (except ESC) will reset the tracking.
- Pressing ESC will stop the program.
- """
- # Python 2/3 compatibility
- import sys
- PY3 = sys.version_info[0] == 3
- if PY3:
- long = int
- import numpy as np
- import cv2 as cv
- from math import cos, sin, sqrt, pi
- def main():
- img_height = 500
- img_width = 500
- kalman = cv.KalmanFilter(2, 1, 0)
- code = long(-1)
- num_circle_steps = 12
- while True:
- img = np.zeros((img_height, img_width, 3), np.uint8)
- state = np.array([[0.0],[(2 * pi) / num_circle_steps]]) # start state
- kalman.transitionMatrix = np.array([[1., 1.], [0., 1.]]) # F. input
- kalman.measurementMatrix = 1. * np.eye(1, 2) # H. input
- kalman.processNoiseCov = 1e-5 * np.eye(2) # Q. input
- kalman.measurementNoiseCov = 1e-1 * np.ones((1, 1)) # R. input
- kalman.errorCovPost = 1. * np.eye(2, 2) # P._k|k KF state var
- kalman.statePost = 0.1 * np.random.randn(2, 1) # x^_k|k KF state var
- while True:
- def calc_point(angle):
- return (np.around(img_width / 2. + img_width / 3.0 * cos(angle), 0).astype(int),
- np.around(img_height / 2. - img_width / 3.0 * sin(angle), 1).astype(int))
- img = img * 1e-3
- state_angle = state[0, 0]
- state_pt = calc_point(state_angle)
- # advance Kalman filter to next timestep
- # updates statePre, statePost, errorCovPre, errorCovPost
- # k-> k+1, x'(k) = A*x(k)
- # P'(k) = temp1*At + Q
- prediction = kalman.predict()
- predict_pt = calc_point(prediction[0, 0]) # equivalent to calc_point(kalman.statePre[0,0])
- # generate measurement
- measurement = kalman.measurementNoiseCov * np.random.randn(1, 1)
- measurement = np.dot(kalman.measurementMatrix, state) + measurement
- measurement_angle = measurement[0, 0]
- measurement_pt = calc_point(measurement_angle)
- # correct the state estimates based on measurements
- # updates statePost & errorCovPost
- kalman.correct(measurement)
- improved_pt = calc_point(kalman.statePost[0, 0])
- # plot points
- cv.drawMarker(img, measurement_pt, (0, 0, 255), cv.MARKER_SQUARE, 5, 2)
- cv.drawMarker(img, predict_pt, (0, 255, 255), cv.MARKER_SQUARE, 5, 2)
- cv.drawMarker(img, improved_pt, (0, 255, 0), cv.MARKER_SQUARE, 5, 2)
- cv.drawMarker(img, state_pt, (255, 255, 255), cv.MARKER_STAR, 10, 1)
- # forecast one step
- cv.drawMarker(img, calc_point(np.dot(kalman.transitionMatrix, kalman.statePost)[0, 0]),
- (255, 255, 0), cv.MARKER_SQUARE, 12, 1)
- cv.line(img, state_pt, measurement_pt, (0, 0, 255), 1, cv.LINE_AA, 0) # red measurement error
- cv.line(img, state_pt, predict_pt, (0, 255, 255), 1, cv.LINE_AA, 0) # yellow pre-meas error
- cv.line(img, state_pt, improved_pt, (0, 255, 0), 1, cv.LINE_AA, 0) # green post-meas error
- # update the real process
- process_noise = sqrt(kalman.processNoiseCov[0, 0]) * np.random.randn(2, 1)
- state = np.dot(kalman.transitionMatrix, state) + process_noise # x_k+1 = F x_k + w_k
- cv.imshow("Kalman", img)
- code = cv.waitKey(1000)
- if code != -1:
- break
- if code in [27, ord('q'), ord('Q')]:
- break
- print('Done')
- if __name__ == '__main__':
- print(__doc__)
- main()
- cv.destroyAllWindows()
|