123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122 |
- #!/usr/bin/env python
- '''
- example to show optical flow estimation using DISOpticalFlow
- USAGE: dis_opt_flow.py [<video_source>]
- Keys:
- 1 - toggle HSV flow visualization
- 2 - toggle glitch
- 3 - toggle spatial propagation of flow vectors
- 4 - toggle temporal propagation of flow vectors
- ESC - exit
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import numpy as np
- import cv2 as cv
- import video
- def draw_flow(img, flow, step=16):
- h, w = img.shape[:2]
- y, x = np.mgrid[step/2:h:step, step/2:w:step].reshape(2,-1).astype(int)
- fx, fy = flow[y,x].T
- lines = np.vstack([x, y, x+fx, y+fy]).T.reshape(-1, 2, 2)
- lines = np.int32(lines + 0.5)
- vis = cv.cvtColor(img, cv.COLOR_GRAY2BGR)
- cv.polylines(vis, lines, 0, (0, 255, 0))
- for (x1, y1), (_x2, _y2) in lines:
- cv.circle(vis, (x1, y1), 1, (0, 255, 0), -1)
- return vis
- def draw_hsv(flow):
- h, w = flow.shape[:2]
- fx, fy = flow[:,:,0], flow[:,:,1]
- ang = np.arctan2(fy, fx) + np.pi
- v = np.sqrt(fx*fx+fy*fy)
- hsv = np.zeros((h, w, 3), np.uint8)
- hsv[...,0] = ang*(180/np.pi/2)
- hsv[...,1] = 255
- hsv[...,2] = np.minimum(v*4, 255)
- bgr = cv.cvtColor(hsv, cv.COLOR_HSV2BGR)
- return bgr
- def warp_flow(img, flow):
- h, w = flow.shape[:2]
- flow = -flow
- flow[:,:,0] += np.arange(w)
- flow[:,:,1] += np.arange(h)[:,np.newaxis]
- res = cv.remap(img, flow, None, cv.INTER_LINEAR)
- return res
- def main():
- import sys
- print(__doc__)
- try:
- fn = sys.argv[1]
- except IndexError:
- fn = 0
- cam = video.create_capture(fn)
- _ret, prev = cam.read()
- prevgray = cv.cvtColor(prev, cv.COLOR_BGR2GRAY)
- show_hsv = False
- show_glitch = False
- use_spatial_propagation = False
- use_temporal_propagation = True
- cur_glitch = prev.copy()
- inst = cv.DISOpticalFlow.create(cv.DISOPTICAL_FLOW_PRESET_MEDIUM)
- inst.setUseSpatialPropagation(use_spatial_propagation)
- flow = None
- while True:
- _ret, img = cam.read()
- gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
- if flow is not None and use_temporal_propagation:
- #warp previous flow to get an initial approximation for the current flow:
- flow = inst.calc(prevgray, gray, warp_flow(flow,flow))
- else:
- flow = inst.calc(prevgray, gray, None)
- prevgray = gray
- cv.imshow('flow', draw_flow(gray, flow))
- if show_hsv:
- cv.imshow('flow HSV', draw_hsv(flow))
- if show_glitch:
- cur_glitch = warp_flow(cur_glitch, flow)
- cv.imshow('glitch', cur_glitch)
- ch = 0xFF & cv.waitKey(5)
- if ch == 27:
- break
- if ch == ord('1'):
- show_hsv = not show_hsv
- print('HSV flow visualization is', ['off', 'on'][show_hsv])
- if ch == ord('2'):
- show_glitch = not show_glitch
- if show_glitch:
- cur_glitch = img.copy()
- print('glitch is', ['off', 'on'][show_glitch])
- if ch == ord('3'):
- use_spatial_propagation = not use_spatial_propagation
- inst.setUseSpatialPropagation(use_spatial_propagation)
- print('spatial propagation is', ['off', 'on'][use_spatial_propagation])
- if ch == ord('4'):
- use_temporal_propagation = not use_temporal_propagation
- print('temporal propagation is', ['off', 'on'][use_temporal_propagation])
- print('Done')
- if __name__ == '__main__':
- print(__doc__)
- main()
- cv.destroyAllWindows()
|