123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 |
- #!/usr/bin/env python
- '''
- SVM and KNearest digit recognition.
- Sample loads a dataset of handwritten digits from 'digits.png'.
- Then it trains a SVM and KNearest classifiers on it and evaluates
- their accuracy.
- Following preprocessing is applied to the dataset:
- - Moment-based image deskew (see deskew())
- - Digit images are split into 4 10x10 cells and 16-bin
- histogram of oriented gradients is computed for each
- cell
- - Transform histograms to space with Hellinger metric (see [1] (RootSIFT))
- [1] R. Arandjelovic, A. Zisserman
- "Three things everyone should know to improve object retrieval"
- http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf
- Usage:
- digits.py
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import numpy as np
- import cv2 as cv
- # built-in modules
- from multiprocessing.pool import ThreadPool
- from numpy.linalg import norm
- # local modules
- from common import clock, mosaic
- SZ = 20 # size of each digit is SZ x SZ
- CLASS_N = 10
- DIGITS_FN = 'digits.png'
- def split2d(img, cell_size, flatten=True):
- h, w = img.shape[:2]
- sx, sy = cell_size
- cells = [np.hsplit(row, w//sx) for row in np.vsplit(img, h//sy)]
- cells = np.array(cells)
- if flatten:
- cells = cells.reshape(-1, sy, sx)
- return cells
- def load_digits(fn):
- fn = cv.samples.findFile(fn)
- print('loading "%s" ...' % fn)
- digits_img = cv.imread(fn, cv.IMREAD_GRAYSCALE)
- digits = split2d(digits_img, (SZ, SZ))
- labels = np.repeat(np.arange(CLASS_N), len(digits)/CLASS_N)
- return digits, labels
- def deskew(img):
- m = cv.moments(img)
- if abs(m['mu02']) < 1e-2:
- return img.copy()
- skew = m['mu11']/m['mu02']
- M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
- img = cv.warpAffine(img, M, (SZ, SZ), flags=cv.WARP_INVERSE_MAP | cv.INTER_LINEAR)
- return img
- class KNearest(object):
- def __init__(self, k = 3):
- self.k = k
- self.model = cv.ml.KNearest_create()
- def train(self, samples, responses):
- self.model.train(samples, cv.ml.ROW_SAMPLE, responses)
- def predict(self, samples):
- _retval, results, _neigh_resp, _dists = self.model.findNearest(samples, self.k)
- return results.ravel()
- def load(self, fn):
- self.model = cv.ml.KNearest_load(fn)
- def save(self, fn):
- self.model.save(fn)
- class SVM(object):
- def __init__(self, C = 1, gamma = 0.5):
- self.model = cv.ml.SVM_create()
- self.model.setGamma(gamma)
- self.model.setC(C)
- self.model.setKernel(cv.ml.SVM_RBF)
- self.model.setType(cv.ml.SVM_C_SVC)
- def train(self, samples, responses):
- self.model.train(samples, cv.ml.ROW_SAMPLE, responses)
- def predict(self, samples):
- return self.model.predict(samples)[1].ravel()
- def load(self, fn):
- self.model = cv.ml.SVM_load(fn)
- def save(self, fn):
- self.model.save(fn)
- def evaluate_model(model, digits, samples, labels):
- resp = model.predict(samples)
- err = (labels != resp).mean()
- print('error: %.2f %%' % (err*100))
- confusion = np.zeros((10, 10), np.int32)
- for i, j in zip(labels, resp):
- confusion[i, int(j)] += 1
- print('confusion matrix:')
- print(confusion)
- print()
- vis = []
- for img, flag in zip(digits, resp == labels):
- img = cv.cvtColor(img, cv.COLOR_GRAY2BGR)
- if not flag:
- img[...,:2] = 0
- vis.append(img)
- return mosaic(25, vis)
- def preprocess_simple(digits):
- return np.float32(digits).reshape(-1, SZ*SZ) / 255.0
- def preprocess_hog(digits):
- samples = []
- for img in digits:
- gx = cv.Sobel(img, cv.CV_32F, 1, 0)
- gy = cv.Sobel(img, cv.CV_32F, 0, 1)
- mag, ang = cv.cartToPolar(gx, gy)
- bin_n = 16
- bin = np.int32(bin_n*ang/(2*np.pi))
- bin_cells = bin[:10,:10], bin[10:,:10], bin[:10,10:], bin[10:,10:]
- mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
- hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
- hist = np.hstack(hists)
- # transform to Hellinger kernel
- eps = 1e-7
- hist /= hist.sum() + eps
- hist = np.sqrt(hist)
- hist /= norm(hist) + eps
- samples.append(hist)
- return np.float32(samples)
- if __name__ == '__main__':
- print(__doc__)
- digits, labels = load_digits(DIGITS_FN)
- print('preprocessing...')
- # shuffle digits
- rand = np.random.RandomState(321)
- shuffle = rand.permutation(len(digits))
- digits, labels = digits[shuffle], labels[shuffle]
- digits2 = list(map(deskew, digits))
- samples = preprocess_hog(digits2)
- train_n = int(0.9*len(samples))
- cv.imshow('test set', mosaic(25, digits[train_n:]))
- digits_train, digits_test = np.split(digits2, [train_n])
- samples_train, samples_test = np.split(samples, [train_n])
- labels_train, labels_test = np.split(labels, [train_n])
- print('training KNearest...')
- model = KNearest(k=4)
- model.train(samples_train, labels_train)
- vis = evaluate_model(model, digits_test, samples_test, labels_test)
- cv.imshow('KNearest test', vis)
- print('training SVM...')
- model = SVM(C=2.67, gamma=5.383)
- model.train(samples_train, labels_train)
- vis = evaluate_model(model, digits_test, samples_test, labels_test)
- cv.imshow('SVM test', vis)
- print('saving SVM as "digits_svm.dat"...')
- model.save('digits_svm.dat')
- cv.waitKey(0)
- cv.destroyAllWindows()
|