123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240 |
- #!/usr/bin/env python
- '''
- Plot camera calibration extrinsics.
- usage:
- camera_calibration_show_extrinsics.py [--calibration <input path>] [--cam_width] [--cam_height] [--scale_focal] [--patternCentric ]
- default values:
- --calibration : left_intrinsics.yml
- --cam_width : 0.064/2
- --cam_height : 0.048/2
- --scale_focal : 40
- --patternCentric : True
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import numpy as np
- import cv2 as cv
- from numpy import linspace
- def inverse_homogeneoux_matrix(M):
- R = M[0:3, 0:3]
- T = M[0:3, 3]
- M_inv = np.identity(4)
- M_inv[0:3, 0:3] = R.T
- M_inv[0:3, 3] = -(R.T).dot(T)
- return M_inv
- def transform_to_matplotlib_frame(cMo, X, inverse=False):
- M = np.identity(4)
- M[1,1] = 0
- M[1,2] = 1
- M[2,1] = -1
- M[2,2] = 0
- if inverse:
- return M.dot(inverse_homogeneoux_matrix(cMo).dot(X))
- else:
- return M.dot(cMo.dot(X))
- def create_camera_model(camera_matrix, width, height, scale_focal, draw_frame_axis=False):
- fx = camera_matrix[0,0]
- fy = camera_matrix[1,1]
- focal = 2 / (fx + fy)
- f_scale = scale_focal * focal
- # draw image plane
- X_img_plane = np.ones((4,5))
- X_img_plane[0:3,0] = [-width, height, f_scale]
- X_img_plane[0:3,1] = [width, height, f_scale]
- X_img_plane[0:3,2] = [width, -height, f_scale]
- X_img_plane[0:3,3] = [-width, -height, f_scale]
- X_img_plane[0:3,4] = [-width, height, f_scale]
- # draw triangle above the image plane
- X_triangle = np.ones((4,3))
- X_triangle[0:3,0] = [-width, -height, f_scale]
- X_triangle[0:3,1] = [0, -2*height, f_scale]
- X_triangle[0:3,2] = [width, -height, f_scale]
- # draw camera
- X_center1 = np.ones((4,2))
- X_center1[0:3,0] = [0, 0, 0]
- X_center1[0:3,1] = [-width, height, f_scale]
- X_center2 = np.ones((4,2))
- X_center2[0:3,0] = [0, 0, 0]
- X_center2[0:3,1] = [width, height, f_scale]
- X_center3 = np.ones((4,2))
- X_center3[0:3,0] = [0, 0, 0]
- X_center3[0:3,1] = [width, -height, f_scale]
- X_center4 = np.ones((4,2))
- X_center4[0:3,0] = [0, 0, 0]
- X_center4[0:3,1] = [-width, -height, f_scale]
- # draw camera frame axis
- X_frame1 = np.ones((4,2))
- X_frame1[0:3,0] = [0, 0, 0]
- X_frame1[0:3,1] = [f_scale/2, 0, 0]
- X_frame2 = np.ones((4,2))
- X_frame2[0:3,0] = [0, 0, 0]
- X_frame2[0:3,1] = [0, f_scale/2, 0]
- X_frame3 = np.ones((4,2))
- X_frame3[0:3,0] = [0, 0, 0]
- X_frame3[0:3,1] = [0, 0, f_scale/2]
- if draw_frame_axis:
- return [X_img_plane, X_triangle, X_center1, X_center2, X_center3, X_center4, X_frame1, X_frame2, X_frame3]
- else:
- return [X_img_plane, X_triangle, X_center1, X_center2, X_center3, X_center4]
- def create_board_model(extrinsics, board_width, board_height, square_size, draw_frame_axis=False):
- width = board_width*square_size
- height = board_height*square_size
- # draw calibration board
- X_board = np.ones((4,5))
- #X_board_cam = np.ones((extrinsics.shape[0],4,5))
- X_board[0:3,0] = [0,0,0]
- X_board[0:3,1] = [width,0,0]
- X_board[0:3,2] = [width,height,0]
- X_board[0:3,3] = [0,height,0]
- X_board[0:3,4] = [0,0,0]
- # draw board frame axis
- X_frame1 = np.ones((4,2))
- X_frame1[0:3,0] = [0, 0, 0]
- X_frame1[0:3,1] = [height/2, 0, 0]
- X_frame2 = np.ones((4,2))
- X_frame2[0:3,0] = [0, 0, 0]
- X_frame2[0:3,1] = [0, height/2, 0]
- X_frame3 = np.ones((4,2))
- X_frame3[0:3,0] = [0, 0, 0]
- X_frame3[0:3,1] = [0, 0, height/2]
- if draw_frame_axis:
- return [X_board, X_frame1, X_frame2, X_frame3]
- else:
- return [X_board]
- def draw_camera_boards(ax, camera_matrix, cam_width, cam_height, scale_focal,
- extrinsics, board_width, board_height, square_size,
- patternCentric):
- from matplotlib import cm
- min_values = np.zeros((3,1))
- min_values = np.inf
- max_values = np.zeros((3,1))
- max_values = -np.inf
- if patternCentric:
- X_moving = create_camera_model(camera_matrix, cam_width, cam_height, scale_focal)
- X_static = create_board_model(extrinsics, board_width, board_height, square_size)
- else:
- X_static = create_camera_model(camera_matrix, cam_width, cam_height, scale_focal, True)
- X_moving = create_board_model(extrinsics, board_width, board_height, square_size)
- cm_subsection = linspace(0.0, 1.0, extrinsics.shape[0])
- colors = [ cm.jet(x) for x in cm_subsection ]
- for i in range(len(X_static)):
- X = np.zeros(X_static[i].shape)
- for j in range(X_static[i].shape[1]):
- X[:,j] = transform_to_matplotlib_frame(np.eye(4), X_static[i][:,j])
- ax.plot3D(X[0,:], X[1,:], X[2,:], color='r')
- min_values = np.minimum(min_values, X[0:3,:].min(1))
- max_values = np.maximum(max_values, X[0:3,:].max(1))
- for idx in range(extrinsics.shape[0]):
- R, _ = cv.Rodrigues(extrinsics[idx,0:3])
- cMo = np.eye(4,4)
- cMo[0:3,0:3] = R
- cMo[0:3,3] = extrinsics[idx,3:6]
- for i in range(len(X_moving)):
- X = np.zeros(X_moving[i].shape)
- for j in range(X_moving[i].shape[1]):
- X[0:4,j] = transform_to_matplotlib_frame(cMo, X_moving[i][0:4,j], patternCentric)
- ax.plot3D(X[0,:], X[1,:], X[2,:], color=colors[idx])
- min_values = np.minimum(min_values, X[0:3,:].min(1))
- max_values = np.maximum(max_values, X[0:3,:].max(1))
- return min_values, max_values
- def main():
- import argparse
- parser = argparse.ArgumentParser(description='Plot camera calibration extrinsics.',
- formatter_class=argparse.ArgumentDefaultsHelpFormatter)
- parser.add_argument('--calibration', type=str, default='left_intrinsics.yml',
- help='YAML camera calibration file.')
- parser.add_argument('--cam_width', type=float, default=0.064/2,
- help='Width/2 of the displayed camera.')
- parser.add_argument('--cam_height', type=float, default=0.048/2,
- help='Height/2 of the displayed camera.')
- parser.add_argument('--scale_focal', type=float, default=40,
- help='Value to scale the focal length.')
- parser.add_argument('--patternCentric', action='store_true',
- help='The calibration board is static and the camera is moving.')
- args = parser.parse_args()
- fs = cv.FileStorage(cv.samples.findFile(args.calibration), cv.FILE_STORAGE_READ)
- board_width = int(fs.getNode('board_width').real())
- board_height = int(fs.getNode('board_height').real())
- square_size = fs.getNode('square_size').real()
- camera_matrix = fs.getNode('camera_matrix').mat()
- extrinsics = fs.getNode('extrinsic_parameters').mat()
- import matplotlib.pyplot as plt
- from mpl_toolkits.mplot3d import Axes3D # pylint: disable=unused-variable
- fig = plt.figure()
- ax = fig.gca(projection='3d')
- ax.set_aspect("auto")
- cam_width = args.cam_width
- cam_height = args.cam_height
- scale_focal = args.scale_focal
- min_values, max_values = draw_camera_boards(ax, camera_matrix, cam_width, cam_height,
- scale_focal, extrinsics, board_width,
- board_height, square_size, args.patternCentric)
- X_min = min_values[0]
- X_max = max_values[0]
- Y_min = min_values[1]
- Y_max = max_values[1]
- Z_min = min_values[2]
- Z_max = max_values[2]
- max_range = np.array([X_max-X_min, Y_max-Y_min, Z_max-Z_min]).max() / 2.0
- mid_x = (X_max+X_min) * 0.5
- mid_y = (Y_max+Y_min) * 0.5
- mid_z = (Z_max+Z_min) * 0.5
- ax.set_xlim(mid_x - max_range, mid_x + max_range)
- ax.set_ylim(mid_y - max_range, mid_y + max_range)
- ax.set_zlim(mid_z - max_range, mid_z + max_range)
- ax.set_xlabel('x')
- ax.set_ylabel('z')
- ax.set_zlabel('-y')
- ax.set_title('Extrinsic Parameters Visualization')
- plt.show()
- print('Done')
- if __name__ == '__main__':
- print(__doc__)
- main()
- cv.destroyAllWindows()
|