luoyc a9c35a4807 opencv source code commit 1 vuosi sitten
..
dnn_model_runner a9c35a4807 opencv source code commit 1 vuosi sitten
face_detector a9c35a4807 opencv source code commit 1 vuosi sitten
results a9c35a4807 opencv source code commit 1 vuosi sitten
CMakeLists.txt a9c35a4807 opencv source code commit 1 vuosi sitten
README.md a9c35a4807 opencv source code commit 1 vuosi sitten
action_recognition.py a9c35a4807 opencv source code commit 1 vuosi sitten
classification.cpp a9c35a4807 opencv source code commit 1 vuosi sitten
classification.py a9c35a4807 opencv source code commit 1 vuosi sitten
colorization.cpp a9c35a4807 opencv source code commit 1 vuosi sitten
colorization.py a9c35a4807 opencv source code commit 1 vuosi sitten
common.hpp a9c35a4807 opencv source code commit 1 vuosi sitten
common.py a9c35a4807 opencv source code commit 1 vuosi sitten
custom_layers.hpp a9c35a4807 opencv source code commit 1 vuosi sitten
dasiamrpn_tracker.cpp a9c35a4807 opencv source code commit 1 vuosi sitten
download_models.py a9c35a4807 opencv source code commit 1 vuosi sitten
edge_detection.py a9c35a4807 opencv source code commit 1 vuosi sitten
face_detect.cpp a9c35a4807 opencv source code commit 1 vuosi sitten
face_detect.py a9c35a4807 opencv source code commit 1 vuosi sitten
fast_neural_style.py a9c35a4807 opencv source code commit 1 vuosi sitten
human_parsing.cpp a9c35a4807 opencv source code commit 1 vuosi sitten
human_parsing.py a9c35a4807 opencv source code commit 1 vuosi sitten
js_face_recognition.html a9c35a4807 opencv source code commit 1 vuosi sitten
mask_rcnn.py a9c35a4807 opencv source code commit 1 vuosi sitten
mobilenet_ssd_accuracy.py a9c35a4807 opencv source code commit 1 vuosi sitten
models.yml a9c35a4807 opencv source code commit 1 vuosi sitten
object_detection.cpp a9c35a4807 opencv source code commit 1 vuosi sitten
object_detection.py a9c35a4807 opencv source code commit 1 vuosi sitten
openpose.cpp a9c35a4807 opencv source code commit 1 vuosi sitten
openpose.py a9c35a4807 opencv source code commit 1 vuosi sitten
optical_flow.py a9c35a4807 opencv source code commit 1 vuosi sitten
person_reid.cpp a9c35a4807 opencv source code commit 1 vuosi sitten
person_reid.py a9c35a4807 opencv source code commit 1 vuosi sitten
scene_text_detection.cpp a9c35a4807 opencv source code commit 1 vuosi sitten
scene_text_recognition.cpp a9c35a4807 opencv source code commit 1 vuosi sitten
scene_text_spotting.cpp a9c35a4807 opencv source code commit 1 vuosi sitten
segmentation.cpp a9c35a4807 opencv source code commit 1 vuosi sitten
segmentation.py a9c35a4807 opencv source code commit 1 vuosi sitten
shrink_tf_graph_weights.py a9c35a4807 opencv source code commit 1 vuosi sitten
siamrpnpp.py a9c35a4807 opencv source code commit 1 vuosi sitten
speech_recognition.py a9c35a4807 opencv source code commit 1 vuosi sitten
text_detection.cpp a9c35a4807 opencv source code commit 1 vuosi sitten
text_detection.py a9c35a4807 opencv source code commit 1 vuosi sitten
tf_text_graph_common.py a9c35a4807 opencv source code commit 1 vuosi sitten
tf_text_graph_efficientdet.py a9c35a4807 opencv source code commit 1 vuosi sitten
tf_text_graph_faster_rcnn.py a9c35a4807 opencv source code commit 1 vuosi sitten
tf_text_graph_mask_rcnn.py a9c35a4807 opencv source code commit 1 vuosi sitten
tf_text_graph_ssd.py a9c35a4807 opencv source code commit 1 vuosi sitten
virtual_try_on.py a9c35a4807 opencv source code commit 1 vuosi sitten

README.md

OpenCV deep learning module samples

Model Zoo

Check a wiki for a list of tested models.

If OpenCV is built with Intel's Inference Engine support you can use Intel's pre-trained models.

There are different preprocessing parameters such mean subtraction or scale factors for different models. You may check the most popular models and their parameters at models.yml configuration file. It might be also used for aliasing samples parameters. In example,

python object_detection.py opencv_fd --model /path/to/caffemodel --config /path/to/prototxt

Check -h option to know which values are used by default:

python object_detection.py opencv_fd -h

Sample models

You can download sample models using download_models.py. For example, the following command will download network weights for OpenCV Face Detector model and store them in FaceDetector folder:

python download_models.py --save_dir FaceDetector opencv_fd

You can use default configuration files adopted for OpenCV from here.

You also can use the script to download necessary files from your code. Assume you have the following code inside your_script.py:

from download_models import downloadFile

filepath1 = downloadFile("https://drive.google.com/uc?export=download&id=0B3gersZ2cHIxRm5PMWRoTkdHdHc", None, filename="MobileNetSSD_deploy.caffemodel", save_dir="save_dir_1")
filepath2 = downloadFile("https://drive.google.com/uc?export=download&id=0B3gersZ2cHIxRm5PMWRoTkdHdHc", "994d30a8afaa9e754d17d2373b2d62a7dfbaaf7a", filename="MobileNetSSD_deploy.caffemodel")
print(filepath1)
print(filepath2)
# Your code

By running the following commands, you will get MobileNetSSD_deploy.caffemodel file:

export OPENCV_DOWNLOAD_DATA_PATH=download_folder
python your_script.py

Note that you can provide a directory using save_dir parameter or via OPENCV_SAVE_DIR environment variable.

Face detection

An origin model with single precision floating point weights has been quantized using TensorFlow framework. To achieve the best accuracy run the model on BGR images resized to 300x300 applying mean subtraction of values (104, 177, 123) for each blue, green and red channels correspondingly.

The following are accuracy metrics obtained using COCO object detection evaluation tool on FDDB dataset (see script) applying resize to 300x300 and keeping an origin images' sizes.

AP - Average Precision                            | FP32/FP16 | UINT8          | FP32/FP16 | UINT8          |
AR - Average Recall                               | 300x300   | 300x300        | any size  | any size       |
--------------------------------------------------|-----------|----------------|-----------|----------------|
AP @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.408     | 0.408          | 0.378     | 0.328 (-0.050) |
AP @[ IoU=0.50      | area=   all | maxDets=100 ] | 0.849     | 0.849          | 0.797     | 0.790 (-0.007) |
AP @[ IoU=0.75      | area=   all | maxDets=100 ] | 0.251     | 0.251          | 0.208     | 0.140 (-0.068) |
AP @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.050     | 0.051 (+0.001) | 0.107     | 0.070 (-0.037) |
AP @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.381     | 0.379 (-0.002) | 0.380     | 0.368 (-0.012) |
AP @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.455     | 0.455          | 0.412     | 0.337 (-0.075) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] | 0.299     | 0.299          | 0.279     | 0.246 (-0.033) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] | 0.482     | 0.482          | 0.476     | 0.436 (-0.040) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.496     | 0.496          | 0.491     | 0.451 (-0.040) |
AR @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.189     | 0.193 (+0.004) | 0.284     | 0.232 (-0.052) |
AR @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.481     | 0.480 (-0.001) | 0.470     | 0.458 (-0.012) |
AR @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.528     | 0.528          | 0.520     | 0.462 (-0.058) |

References