luoyc a9c35a4807 opencv source code commit před 1 rokem
..
dnn_model_runner a9c35a4807 opencv source code commit před 1 rokem
face_detector a9c35a4807 opencv source code commit před 1 rokem
results a9c35a4807 opencv source code commit před 1 rokem
CMakeLists.txt a9c35a4807 opencv source code commit před 1 rokem
README.md a9c35a4807 opencv source code commit před 1 rokem
action_recognition.py a9c35a4807 opencv source code commit před 1 rokem
classification.cpp a9c35a4807 opencv source code commit před 1 rokem
classification.py a9c35a4807 opencv source code commit před 1 rokem
colorization.cpp a9c35a4807 opencv source code commit před 1 rokem
colorization.py a9c35a4807 opencv source code commit před 1 rokem
common.hpp a9c35a4807 opencv source code commit před 1 rokem
common.py a9c35a4807 opencv source code commit před 1 rokem
custom_layers.hpp a9c35a4807 opencv source code commit před 1 rokem
dasiamrpn_tracker.cpp a9c35a4807 opencv source code commit před 1 rokem
download_models.py a9c35a4807 opencv source code commit před 1 rokem
edge_detection.py a9c35a4807 opencv source code commit před 1 rokem
face_detect.cpp a9c35a4807 opencv source code commit před 1 rokem
face_detect.py a9c35a4807 opencv source code commit před 1 rokem
fast_neural_style.py a9c35a4807 opencv source code commit před 1 rokem
human_parsing.cpp a9c35a4807 opencv source code commit před 1 rokem
human_parsing.py a9c35a4807 opencv source code commit před 1 rokem
js_face_recognition.html a9c35a4807 opencv source code commit před 1 rokem
mask_rcnn.py a9c35a4807 opencv source code commit před 1 rokem
mobilenet_ssd_accuracy.py a9c35a4807 opencv source code commit před 1 rokem
models.yml a9c35a4807 opencv source code commit před 1 rokem
object_detection.cpp a9c35a4807 opencv source code commit před 1 rokem
object_detection.py a9c35a4807 opencv source code commit před 1 rokem
openpose.cpp a9c35a4807 opencv source code commit před 1 rokem
openpose.py a9c35a4807 opencv source code commit před 1 rokem
optical_flow.py a9c35a4807 opencv source code commit před 1 rokem
person_reid.cpp a9c35a4807 opencv source code commit před 1 rokem
person_reid.py a9c35a4807 opencv source code commit před 1 rokem
scene_text_detection.cpp a9c35a4807 opencv source code commit před 1 rokem
scene_text_recognition.cpp a9c35a4807 opencv source code commit před 1 rokem
scene_text_spotting.cpp a9c35a4807 opencv source code commit před 1 rokem
segmentation.cpp a9c35a4807 opencv source code commit před 1 rokem
segmentation.py a9c35a4807 opencv source code commit před 1 rokem
shrink_tf_graph_weights.py a9c35a4807 opencv source code commit před 1 rokem
siamrpnpp.py a9c35a4807 opencv source code commit před 1 rokem
speech_recognition.py a9c35a4807 opencv source code commit před 1 rokem
text_detection.cpp a9c35a4807 opencv source code commit před 1 rokem
text_detection.py a9c35a4807 opencv source code commit před 1 rokem
tf_text_graph_common.py a9c35a4807 opencv source code commit před 1 rokem
tf_text_graph_efficientdet.py a9c35a4807 opencv source code commit před 1 rokem
tf_text_graph_faster_rcnn.py a9c35a4807 opencv source code commit před 1 rokem
tf_text_graph_mask_rcnn.py a9c35a4807 opencv source code commit před 1 rokem
tf_text_graph_ssd.py a9c35a4807 opencv source code commit před 1 rokem
virtual_try_on.py a9c35a4807 opencv source code commit před 1 rokem

README.md

OpenCV deep learning module samples

Model Zoo

Check a wiki for a list of tested models.

If OpenCV is built with Intel's Inference Engine support you can use Intel's pre-trained models.

There are different preprocessing parameters such mean subtraction or scale factors for different models. You may check the most popular models and their parameters at models.yml configuration file. It might be also used for aliasing samples parameters. In example,

python object_detection.py opencv_fd --model /path/to/caffemodel --config /path/to/prototxt

Check -h option to know which values are used by default:

python object_detection.py opencv_fd -h

Sample models

You can download sample models using download_models.py. For example, the following command will download network weights for OpenCV Face Detector model and store them in FaceDetector folder:

python download_models.py --save_dir FaceDetector opencv_fd

You can use default configuration files adopted for OpenCV from here.

You also can use the script to download necessary files from your code. Assume you have the following code inside your_script.py:

from download_models import downloadFile

filepath1 = downloadFile("https://drive.google.com/uc?export=download&id=0B3gersZ2cHIxRm5PMWRoTkdHdHc", None, filename="MobileNetSSD_deploy.caffemodel", save_dir="save_dir_1")
filepath2 = downloadFile("https://drive.google.com/uc?export=download&id=0B3gersZ2cHIxRm5PMWRoTkdHdHc", "994d30a8afaa9e754d17d2373b2d62a7dfbaaf7a", filename="MobileNetSSD_deploy.caffemodel")
print(filepath1)
print(filepath2)
# Your code

By running the following commands, you will get MobileNetSSD_deploy.caffemodel file:

export OPENCV_DOWNLOAD_DATA_PATH=download_folder
python your_script.py

Note that you can provide a directory using save_dir parameter or via OPENCV_SAVE_DIR environment variable.

Face detection

An origin model with single precision floating point weights has been quantized using TensorFlow framework. To achieve the best accuracy run the model on BGR images resized to 300x300 applying mean subtraction of values (104, 177, 123) for each blue, green and red channels correspondingly.

The following are accuracy metrics obtained using COCO object detection evaluation tool on FDDB dataset (see script) applying resize to 300x300 and keeping an origin images' sizes.

AP - Average Precision                            | FP32/FP16 | UINT8          | FP32/FP16 | UINT8          |
AR - Average Recall                               | 300x300   | 300x300        | any size  | any size       |
--------------------------------------------------|-----------|----------------|-----------|----------------|
AP @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.408     | 0.408          | 0.378     | 0.328 (-0.050) |
AP @[ IoU=0.50      | area=   all | maxDets=100 ] | 0.849     | 0.849          | 0.797     | 0.790 (-0.007) |
AP @[ IoU=0.75      | area=   all | maxDets=100 ] | 0.251     | 0.251          | 0.208     | 0.140 (-0.068) |
AP @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.050     | 0.051 (+0.001) | 0.107     | 0.070 (-0.037) |
AP @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.381     | 0.379 (-0.002) | 0.380     | 0.368 (-0.012) |
AP @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.455     | 0.455          | 0.412     | 0.337 (-0.075) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] | 0.299     | 0.299          | 0.279     | 0.246 (-0.033) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] | 0.482     | 0.482          | 0.476     | 0.436 (-0.040) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.496     | 0.496          | 0.491     | 0.451 (-0.040) |
AR @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.189     | 0.193 (+0.004) | 0.284     | 0.232 (-0.052) |
AR @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.481     | 0.480 (-0.001) | 0.470     | 0.458 (-0.012) |
AR @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.528     | 0.528          | 0.520     | 0.462 (-0.058) |

References