123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413 |
- # This file is a part of OpenCV project.
- # It is a subject to the license terms in the LICENSE file found in the top-level directory
- # of this distribution and at http://opencv.org/license.html.
- #
- # Copyright (C) 2018, Intel Corporation, all rights reserved.
- # Third party copyrights are property of their respective owners.
- #
- # Use this script to get the text graph representation (.pbtxt) of SSD-based
- # deep learning network trained in TensorFlow Object Detection API.
- # Then you can import it with a binary frozen graph (.pb) using readNetFromTensorflow() function.
- # See details and examples on the following wiki page: https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API
- import argparse
- import re
- from math import sqrt
- from tf_text_graph_common import *
- class SSDAnchorGenerator:
- def __init__(self, min_scale, max_scale, num_layers, aspect_ratios,
- reduce_boxes_in_lowest_layer, image_width, image_height):
- self.min_scale = min_scale
- self.aspect_ratios = aspect_ratios
- self.reduce_boxes_in_lowest_layer = reduce_boxes_in_lowest_layer
- self.image_width = image_width
- self.image_height = image_height
- self.scales = [min_scale + (max_scale - min_scale) * i / (num_layers - 1)
- for i in range(num_layers)] + [1.0]
- def get(self, layer_id):
- if layer_id == 0 and self.reduce_boxes_in_lowest_layer:
- widths = [0.1, self.min_scale * sqrt(2.0), self.min_scale * sqrt(0.5)]
- heights = [0.1, self.min_scale / sqrt(2.0), self.min_scale / sqrt(0.5)]
- else:
- widths = [self.scales[layer_id] * sqrt(ar) for ar in self.aspect_ratios]
- heights = [self.scales[layer_id] / sqrt(ar) for ar in self.aspect_ratios]
- widths += [sqrt(self.scales[layer_id] * self.scales[layer_id + 1])]
- heights += [sqrt(self.scales[layer_id] * self.scales[layer_id + 1])]
- min_size = min(self.image_width, self.image_height)
- widths = [w * min_size for w in widths]
- heights = [h * min_size for h in heights]
- return widths, heights
- class MultiscaleAnchorGenerator:
- def __init__(self, min_level, aspect_ratios, scales_per_octave, anchor_scale):
- self.min_level = min_level
- self.aspect_ratios = aspect_ratios
- self.anchor_scale = anchor_scale
- self.scales = [2**(float(s) / scales_per_octave) for s in range(scales_per_octave)]
- def get(self, layer_id):
- widths = []
- heights = []
- for a in self.aspect_ratios:
- for s in self.scales:
- base_anchor_size = 2**(self.min_level + layer_id) * self.anchor_scale
- ar = sqrt(a)
- heights.append(base_anchor_size * s / ar)
- widths.append(base_anchor_size * s * ar)
- return widths, heights
- def createSSDGraph(modelPath, configPath, outputPath):
- # Nodes that should be kept.
- keepOps = ['Conv2D', 'BiasAdd', 'Add', 'AddV2', 'Relu', 'Relu6', 'Placeholder', 'FusedBatchNorm',
- 'DepthwiseConv2dNative', 'ConcatV2', 'Mul', 'MaxPool', 'AvgPool', 'Identity',
- 'Sub', 'ResizeNearestNeighbor', 'Pad', 'FusedBatchNormV3', 'Mean']
- # Node with which prefixes should be removed
- prefixesToRemove = ('MultipleGridAnchorGenerator/', 'Concatenate/', 'Postprocessor/', 'Preprocessor/map')
- # Load a config file.
- config = readTextMessage(configPath)
- config = config['model'][0]['ssd'][0]
- num_classes = int(config['num_classes'][0])
- fixed_shape_resizer = config['image_resizer'][0]['fixed_shape_resizer'][0]
- image_width = int(fixed_shape_resizer['width'][0])
- image_height = int(fixed_shape_resizer['height'][0])
- box_predictor = 'convolutional' if 'convolutional_box_predictor' in config['box_predictor'][0] else 'weight_shared_convolutional'
- anchor_generator = config['anchor_generator'][0]
- if 'ssd_anchor_generator' in anchor_generator:
- ssd_anchor_generator = anchor_generator['ssd_anchor_generator'][0]
- min_scale = float(ssd_anchor_generator['min_scale'][0])
- max_scale = float(ssd_anchor_generator['max_scale'][0])
- num_layers = int(ssd_anchor_generator['num_layers'][0])
- aspect_ratios = [float(ar) for ar in ssd_anchor_generator['aspect_ratios']]
- reduce_boxes_in_lowest_layer = True
- if 'reduce_boxes_in_lowest_layer' in ssd_anchor_generator:
- reduce_boxes_in_lowest_layer = ssd_anchor_generator['reduce_boxes_in_lowest_layer'][0] == 'true'
- priors_generator = SSDAnchorGenerator(min_scale, max_scale, num_layers,
- aspect_ratios, reduce_boxes_in_lowest_layer,
- image_width, image_height)
- print('Scale: [%f-%f]' % (min_scale, max_scale))
- print('Aspect ratios: %s' % str(aspect_ratios))
- print('Reduce boxes in the lowest layer: %s' % str(reduce_boxes_in_lowest_layer))
- elif 'multiscale_anchor_generator' in anchor_generator:
- multiscale_anchor_generator = anchor_generator['multiscale_anchor_generator'][0]
- min_level = int(multiscale_anchor_generator['min_level'][0])
- max_level = int(multiscale_anchor_generator['max_level'][0])
- anchor_scale = float(multiscale_anchor_generator['anchor_scale'][0])
- aspect_ratios = [float(ar) for ar in multiscale_anchor_generator['aspect_ratios']]
- scales_per_octave = int(multiscale_anchor_generator['scales_per_octave'][0])
- num_layers = max_level - min_level + 1
- priors_generator = MultiscaleAnchorGenerator(min_level, aspect_ratios,
- scales_per_octave, anchor_scale)
- print('Levels: [%d-%d]' % (min_level, max_level))
- print('Anchor scale: %f' % anchor_scale)
- print('Scales per octave: %d' % scales_per_octave)
- print('Aspect ratios: %s' % str(aspect_ratios))
- else:
- print('Unknown anchor_generator')
- exit(0)
- print('Number of classes: %d' % num_classes)
- print('Number of layers: %d' % num_layers)
- print('box predictor: %s' % box_predictor)
- print('Input image size: %dx%d' % (image_width, image_height))
- # Read the graph.
- outNames = ['num_detections', 'detection_scores', 'detection_boxes', 'detection_classes']
- writeTextGraph(modelPath, outputPath, outNames)
- graph_def = parseTextGraph(outputPath)
- def getUnconnectedNodes():
- unconnected = []
- for node in graph_def.node:
- unconnected.append(node.name)
- for inp in node.input:
- if inp in unconnected:
- unconnected.remove(inp)
- return unconnected
- def fuse_nodes(nodesToKeep):
- # Detect unfused batch normalization nodes and fuse them.
- # Add_0 <-- moving_variance, add_y
- # Rsqrt <-- Add_0
- # Mul_0 <-- Rsqrt, gamma
- # Mul_1 <-- input, Mul_0
- # Mul_2 <-- moving_mean, Mul_0
- # Sub_0 <-- beta, Mul_2
- # Add_1 <-- Mul_1, Sub_0
- nodesMap = {node.name: node for node in graph_def.node}
- subgraphBatchNorm = ['Add',
- ['Mul', 'input', ['Mul', ['Rsqrt', ['Add', 'moving_variance', 'add_y']], 'gamma']],
- ['Sub', 'beta', ['Mul', 'moving_mean', 'Mul_0']]]
- subgraphBatchNormV2 = ['AddV2',
- ['Mul', 'input', ['Mul', ['Rsqrt', ['AddV2', 'moving_variance', 'add_y']], 'gamma']],
- ['Sub', 'beta', ['Mul', 'moving_mean', 'Mul_0']]]
- # Detect unfused nearest neighbor resize.
- subgraphResizeNN = ['Reshape',
- ['Mul', ['Reshape', 'input', ['Pack', 'shape_1', 'shape_2', 'shape_3', 'shape_4', 'shape_5']],
- 'ones'],
- ['Pack', ['StridedSlice', ['Shape', 'input'], 'stack', 'stack_1', 'stack_2'],
- 'out_height', 'out_width', 'out_channels']]
- def checkSubgraph(node, targetNode, inputs, fusedNodes):
- op = targetNode[0]
- if node.op == op and (len(node.input) >= len(targetNode) - 1):
- fusedNodes.append(node)
- for i, inpOp in enumerate(targetNode[1:]):
- if isinstance(inpOp, list):
- if not node.input[i] in nodesMap or \
- not checkSubgraph(nodesMap[node.input[i]], inpOp, inputs, fusedNodes):
- return False
- else:
- inputs[inpOp] = node.input[i]
- return True
- else:
- return False
- nodesToRemove = []
- for node in graph_def.node:
- inputs = {}
- fusedNodes = []
- if checkSubgraph(node, subgraphBatchNorm, inputs, fusedNodes) or \
- checkSubgraph(node, subgraphBatchNormV2, inputs, fusedNodes):
- name = node.name
- node.Clear()
- node.name = name
- node.op = 'FusedBatchNorm'
- node.input.append(inputs['input'])
- node.input.append(inputs['gamma'])
- node.input.append(inputs['beta'])
- node.input.append(inputs['moving_mean'])
- node.input.append(inputs['moving_variance'])
- node.addAttr('epsilon', 0.001)
- nodesToRemove += fusedNodes[1:]
- inputs = {}
- fusedNodes = []
- if checkSubgraph(node, subgraphResizeNN, inputs, fusedNodes):
- name = node.name
- node.Clear()
- node.name = name
- node.op = 'ResizeNearestNeighbor'
- node.input.append(inputs['input'])
- node.input.append(name + '/output_shape')
- out_height_node = nodesMap[inputs['out_height']]
- out_width_node = nodesMap[inputs['out_width']]
- out_height = int(out_height_node.attr['value']['tensor'][0]['int_val'][0])
- out_width = int(out_width_node.attr['value']['tensor'][0]['int_val'][0])
- shapeNode = NodeDef()
- shapeNode.name = name + '/output_shape'
- shapeNode.op = 'Const'
- shapeNode.addAttr('value', [out_height, out_width])
- graph_def.node.insert(graph_def.node.index(node), shapeNode)
- nodesToKeep.append(shapeNode.name)
- nodesToRemove += fusedNodes[1:]
- for node in nodesToRemove:
- graph_def.node.remove(node)
- nodesToKeep = []
- fuse_nodes(nodesToKeep)
- removeIdentity(graph_def)
- def to_remove(name, op):
- return (not name in nodesToKeep) and \
- (op == 'Const' or (not op in keepOps) or name.startswith(prefixesToRemove))
- removeUnusedNodesAndAttrs(to_remove, graph_def)
- # Connect input node to the first layer
- assert(graph_def.node[0].op == 'Placeholder')
- try:
- input_shape = graph_def.node[0].attr['shape']['shape'][0]['dim']
- input_shape[1]['size'] = image_height
- input_shape[2]['size'] = image_width
- except:
- print("Input shapes are undefined")
- # assert(graph_def.node[1].op == 'Conv2D')
- weights = graph_def.node[1].input[-1]
- for i in range(len(graph_def.node[1].input)):
- graph_def.node[1].input.pop()
- graph_def.node[1].input.append(graph_def.node[0].name)
- graph_def.node[1].input.append(weights)
- # check and correct the case when preprocessing block is after input
- preproc_id = "Preprocessor/"
- if graph_def.node[2].name.startswith(preproc_id) and \
- graph_def.node[2].input[0].startswith(preproc_id):
- if not any(preproc_id in inp for inp in graph_def.node[3].input):
- graph_def.node[3].input.insert(0, graph_def.node[2].name)
- # Create SSD postprocessing head ###############################################
- # Concatenate predictions of classes, predictions of bounding boxes and proposals.
- def addConcatNode(name, inputs, axisNodeName):
- concat = NodeDef()
- concat.name = name
- concat.op = 'ConcatV2'
- for inp in inputs:
- concat.input.append(inp)
- concat.input.append(axisNodeName)
- graph_def.node.extend([concat])
- addConstNode('concat/axis_flatten', [-1], graph_def)
- addConstNode('PriorBox/concat/axis', [-2], graph_def)
- for label in ['ClassPredictor', 'BoxEncodingPredictor' if box_predictor == 'convolutional' else 'BoxPredictor']:
- concatInputs = []
- for i in range(num_layers):
- # Flatten predictions
- flatten = NodeDef()
- if box_predictor == 'convolutional':
- inpName = 'BoxPredictor_%d/%s/BiasAdd' % (i, label)
- else:
- if i == 0:
- inpName = 'WeightSharedConvolutionalBoxPredictor/%s/BiasAdd' % label
- else:
- inpName = 'WeightSharedConvolutionalBoxPredictor_%d/%s/BiasAdd' % (i, label)
- flatten.input.append(inpName)
- flatten.name = inpName + '/Flatten'
- flatten.op = 'Flatten'
- concatInputs.append(flatten.name)
- graph_def.node.extend([flatten])
- addConcatNode('%s/concat' % label, concatInputs, 'concat/axis_flatten')
- num_matched_layers = 0
- for node in graph_def.node:
- if re.match('BoxPredictor_\d/BoxEncodingPredictor/convolution', node.name) or \
- re.match('BoxPredictor_\d/BoxEncodingPredictor/Conv2D', node.name) or \
- re.match('WeightSharedConvolutionalBoxPredictor(_\d)*/BoxPredictor/Conv2D', node.name):
- node.addAttr('loc_pred_transposed', True)
- num_matched_layers += 1
- assert(num_matched_layers == num_layers)
- # Add layers that generate anchors (bounding boxes proposals).
- priorBoxes = []
- boxCoder = config['box_coder'][0]
- fasterRcnnBoxCoder = boxCoder['faster_rcnn_box_coder'][0]
- boxCoderVariance = [1.0/float(fasterRcnnBoxCoder['x_scale'][0]), 1.0/float(fasterRcnnBoxCoder['y_scale'][0]), 1.0/float(fasterRcnnBoxCoder['width_scale'][0]), 1.0/float(fasterRcnnBoxCoder['height_scale'][0])]
- for i in range(num_layers):
- priorBox = NodeDef()
- priorBox.name = 'PriorBox_%d' % i
- priorBox.op = 'PriorBox'
- if box_predictor == 'convolutional':
- priorBox.input.append('BoxPredictor_%d/BoxEncodingPredictor/BiasAdd' % i)
- else:
- if i == 0:
- priorBox.input.append('WeightSharedConvolutionalBoxPredictor/BoxPredictor/Conv2D')
- else:
- priorBox.input.append('WeightSharedConvolutionalBoxPredictor_%d/BoxPredictor/BiasAdd' % i)
- priorBox.input.append(graph_def.node[0].name) # image_tensor
- priorBox.addAttr('flip', False)
- priorBox.addAttr('clip', False)
- widths, heights = priors_generator.get(i)
- priorBox.addAttr('width', widths)
- priorBox.addAttr('height', heights)
- priorBox.addAttr('variance', boxCoderVariance)
- graph_def.node.extend([priorBox])
- priorBoxes.append(priorBox.name)
- # Compare this layer's output with Postprocessor/Reshape
- addConcatNode('PriorBox/concat', priorBoxes, 'concat/axis_flatten')
- # Sigmoid for classes predictions and DetectionOutput layer
- addReshape('ClassPredictor/concat', 'ClassPredictor/concat3d', [0, -1, num_classes + 1], graph_def)
- sigmoid = NodeDef()
- sigmoid.name = 'ClassPredictor/concat/sigmoid'
- sigmoid.op = 'Sigmoid'
- sigmoid.input.append('ClassPredictor/concat3d')
- graph_def.node.extend([sigmoid])
- addFlatten(sigmoid.name, sigmoid.name + '/Flatten', graph_def)
- detectionOut = NodeDef()
- detectionOut.name = 'detection_out'
- detectionOut.op = 'DetectionOutput'
- if box_predictor == 'convolutional':
- detectionOut.input.append('BoxEncodingPredictor/concat')
- else:
- detectionOut.input.append('BoxPredictor/concat')
- detectionOut.input.append(sigmoid.name + '/Flatten')
- detectionOut.input.append('PriorBox/concat')
- detectionOut.addAttr('num_classes', num_classes + 1)
- detectionOut.addAttr('share_location', True)
- detectionOut.addAttr('background_label_id', 0)
- postProcessing = config['post_processing'][0]
- batchNMS = postProcessing['batch_non_max_suppression'][0]
- if 'iou_threshold' in batchNMS:
- detectionOut.addAttr('nms_threshold', float(batchNMS['iou_threshold'][0]))
- else:
- detectionOut.addAttr('nms_threshold', 0.6)
- if 'score_threshold' in batchNMS:
- detectionOut.addAttr('confidence_threshold', float(batchNMS['score_threshold'][0]))
- else:
- detectionOut.addAttr('confidence_threshold', 0.01)
- if 'max_detections_per_class' in batchNMS:
- detectionOut.addAttr('top_k', int(batchNMS['max_detections_per_class'][0]))
- else:
- detectionOut.addAttr('top_k', 100)
- if 'max_total_detections' in batchNMS:
- detectionOut.addAttr('keep_top_k', int(batchNMS['max_total_detections'][0]))
- else:
- detectionOut.addAttr('keep_top_k', 100)
- detectionOut.addAttr('code_type', "CENTER_SIZE")
- graph_def.node.extend([detectionOut])
- while True:
- unconnectedNodes = getUnconnectedNodes()
- unconnectedNodes.remove(detectionOut.name)
- if not unconnectedNodes:
- break
- for name in unconnectedNodes:
- for i in range(len(graph_def.node)):
- if graph_def.node[i].name == name:
- del graph_def.node[i]
- break
- # Save as text.
- graph_def.save(outputPath)
- if __name__ == "__main__":
- parser = argparse.ArgumentParser(description='Run this script to get a text graph of '
- 'SSD model from TensorFlow Object Detection API. '
- 'Then pass it with .pb file to cv::dnn::readNetFromTensorflow function.')
- parser.add_argument('--input', required=True, help='Path to frozen TensorFlow graph.')
- parser.add_argument('--output', required=True, help='Path to output text graph.')
- parser.add_argument('--config', required=True, help='Path to a *.config file is used for training.')
- args = parser.parse_args()
- createSSDGraph(args.input, args.config, args.output)
|