1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- # This file is part of OpenCV project.
- # It is subject to the license terms in the LICENSE file found in the top-level directory
- # of this distribution and at http://opencv.org/license.html.
- #
- # Copyright (C) 2017, Intel Corporation, all rights reserved.
- # Third party copyrights are property of their respective owners.
- import tensorflow as tf
- import struct
- import argparse
- import numpy as np
- parser = argparse.ArgumentParser(description='Convert weights of a frozen TensorFlow graph to fp16.')
- parser.add_argument('--input', required=True, help='Path to frozen graph.')
- parser.add_argument('--output', required=True, help='Path to output graph.')
- parser.add_argument('--ops', default=['Conv2D', 'MatMul'], nargs='+',
- help='List of ops which weights are converted.')
- args = parser.parse_args()
- DT_FLOAT = 1
- DT_HALF = 19
- # For the frozen graphs, an every node that uses weights connected to Const nodes
- # through an Identity node. Usually they're called in the same way with '/read' suffix.
- # We'll replace all of them to Cast nodes.
- # Load the model
- with tf.gfile.FastGFile(args.input) as f:
- graph_def = tf.GraphDef()
- graph_def.ParseFromString(f.read())
- # Set of all inputs from desired nodes.
- inputs = []
- for node in graph_def.node:
- if node.op in args.ops:
- inputs += node.input
- weightsNodes = []
- for node in graph_def.node:
- # From the whole inputs we need to keep only an Identity nodes.
- if node.name in inputs and node.op == 'Identity' and node.attr['T'].type == DT_FLOAT:
- weightsNodes.append(node.input[0])
- # Replace Identity to Cast.
- node.op = 'Cast'
- node.attr['DstT'].type = DT_FLOAT
- node.attr['SrcT'].type = DT_HALF
- del node.attr['T']
- del node.attr['_class']
- # Convert weights to halfs.
- for node in graph_def.node:
- if node.name in weightsNodes:
- node.attr['dtype'].type = DT_HALF
- node.attr['value'].tensor.dtype = DT_HALF
- floats = node.attr['value'].tensor.tensor_content
- floats = struct.unpack('f' * (len(floats) / 4), floats)
- halfs = np.array(floats).astype(np.float16).view(np.uint16)
- node.attr['value'].tensor.tensor_content = struct.pack('H' * len(halfs), *halfs)
- tf.train.write_graph(graph_def, "", args.output, as_text=False)
|