123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- import cv2 as cv
- import argparse
- import numpy as np
- import sys
- from common import *
- backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV,
- cv.dnn.DNN_BACKEND_VKCOM, cv.dnn.DNN_BACKEND_CUDA)
- targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD, cv.dnn.DNN_TARGET_HDDL,
- cv.dnn.DNN_TARGET_VULKAN, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16)
- parser = argparse.ArgumentParser(add_help=False)
- parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
- help='An optional path to file with preprocessing parameters.')
- parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
- parser.add_argument('--framework', choices=['caffe', 'tensorflow', 'torch', 'darknet'],
- help='Optional name of an origin framework of the model. '
- 'Detect it automatically if it does not set.')
- parser.add_argument('--colors', help='Optional path to a text file with colors for an every class. '
- 'An every color is represented with three values from 0 to 255 in BGR channels order.')
- parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
- help="Choose one of computation backends: "
- "%d: automatically (by default), "
- "%d: Halide language (http://halide-lang.org/), "
- "%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
- "%d: OpenCV implementation, "
- "%d: VKCOM, "
- "%d: CUDA"% backends)
- parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
- help='Choose one of target computation devices: '
- '%d: CPU target (by default), '
- '%d: OpenCL, '
- '%d: OpenCL fp16 (half-float precision), '
- '%d: NCS2 VPU, '
- '%d: HDDL VPU, '
- '%d: Vulkan, '
- '%d: CUDA, '
- '%d: CUDA fp16 (half-float preprocess)'% targets)
- args, _ = parser.parse_known_args()
- add_preproc_args(args.zoo, parser, 'segmentation')
- parser = argparse.ArgumentParser(parents=[parser],
- description='Use this script to run semantic segmentation deep learning networks using OpenCV.',
- formatter_class=argparse.ArgumentDefaultsHelpFormatter)
- args = parser.parse_args()
- args.model = findFile(args.model)
- args.config = findFile(args.config)
- args.classes = findFile(args.classes)
- np.random.seed(324)
- # Load names of classes
- classes = None
- if args.classes:
- with open(args.classes, 'rt') as f:
- classes = f.read().rstrip('\n').split('\n')
- # Load colors
- colors = None
- if args.colors:
- with open(args.colors, 'rt') as f:
- colors = [np.array(color.split(' '), np.uint8) for color in f.read().rstrip('\n').split('\n')]
- legend = None
- def showLegend(classes):
- global legend
- if not classes is None and legend is None:
- blockHeight = 30
- assert(len(classes) == len(colors))
- legend = np.zeros((blockHeight * len(colors), 200, 3), np.uint8)
- for i in range(len(classes)):
- block = legend[i * blockHeight:(i + 1) * blockHeight]
- block[:,:] = colors[i]
- cv.putText(block, classes[i], (0, blockHeight//2), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
- cv.namedWindow('Legend', cv.WINDOW_NORMAL)
- cv.imshow('Legend', legend)
- classes = None
- # Load a network
- net = cv.dnn.readNet(args.model, args.config, args.framework)
- net.setPreferableBackend(args.backend)
- net.setPreferableTarget(args.target)
- winName = 'Deep learning semantic segmentation in OpenCV'
- cv.namedWindow(winName, cv.WINDOW_NORMAL)
- cap = cv.VideoCapture(args.input if args.input else 0)
- legend = None
- while cv.waitKey(1) < 0:
- hasFrame, frame = cap.read()
- if not hasFrame:
- cv.waitKey()
- break
- frameHeight = frame.shape[0]
- frameWidth = frame.shape[1]
- # Create a 4D blob from a frame.
- inpWidth = args.width if args.width else frameWidth
- inpHeight = args.height if args.height else frameHeight
- blob = cv.dnn.blobFromImage(frame, args.scale, (inpWidth, inpHeight), args.mean, args.rgb, crop=False)
- # Run a model
- net.setInput(blob)
- score = net.forward()
- numClasses = score.shape[1]
- height = score.shape[2]
- width = score.shape[3]
- # Draw segmentation
- if not colors:
- # Generate colors
- colors = [np.array([0, 0, 0], np.uint8)]
- for i in range(1, numClasses):
- colors.append((colors[i - 1] + np.random.randint(0, 256, [3], np.uint8)) / 2)
- classIds = np.argmax(score[0], axis=0)
- segm = np.stack([colors[idx] for idx in classIds.flatten()])
- segm = segm.reshape(height, width, 3)
- segm = cv.resize(segm, (frameWidth, frameHeight), interpolation=cv.INTER_NEAREST)
- frame = (0.1 * frame + 0.9 * segm).astype(np.uint8)
- # Put efficiency information.
- t, _ = net.getPerfProfile()
- label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
- cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
- showLegend(classes)
- cv.imshow(winName, frame)
|