123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252 |
- #include <fstream>
- #include <sstream>
- #include <opencv2/dnn.hpp>
- #include <opencv2/imgproc.hpp>
- #include <opencv2/highgui.hpp>
- #include "common.hpp"
- std::string keys =
- "{ help h | | Print help message. }"
- "{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }"
- "{ zoo | models.yml | An optional path to file with preprocessing parameters }"
- "{ device | 0 | camera device number. }"
- "{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera. }"
- "{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }"
- "{ classes | | Optional path to a text file with names of classes. }"
- "{ colors | | Optional path to a text file with colors for an every class. "
- "An every color is represented with three values from 0 to 255 in BGR channels order. }"
- "{ backend | 0 | Choose one of computation backends: "
- "0: automatically (by default), "
- "1: Halide language (http://halide-lang.org/), "
- "2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
- "3: OpenCV implementation, "
- "4: VKCOM, "
- "5: CUDA }"
- "{ target | 0 | Choose one of target computation devices: "
- "0: CPU target (by default), "
- "1: OpenCL, "
- "2: OpenCL fp16 (half-float precision), "
- "3: VPU, "
- "4: Vulkan, "
- "6: CUDA, "
- "7: CUDA fp16 (half-float preprocess) }";
- using namespace cv;
- using namespace dnn;
- std::vector<std::string> classes;
- std::vector<Vec3b> colors;
- void showLegend();
- void colorizeSegmentation(const Mat &score, Mat &segm);
- int main(int argc, char** argv)
- {
- CommandLineParser parser(argc, argv, keys);
- const std::string modelName = parser.get<String>("@alias");
- const std::string zooFile = parser.get<String>("zoo");
- keys += genPreprocArguments(modelName, zooFile);
- parser = CommandLineParser(argc, argv, keys);
- parser.about("Use this script to run semantic segmentation deep learning networks using OpenCV.");
- if (argc == 1 || parser.has("help"))
- {
- parser.printMessage();
- return 0;
- }
- float scale = parser.get<float>("scale");
- Scalar mean = parser.get<Scalar>("mean");
- bool swapRB = parser.get<bool>("rgb");
- int inpWidth = parser.get<int>("width");
- int inpHeight = parser.get<int>("height");
- String model = findFile(parser.get<String>("model"));
- String config = findFile(parser.get<String>("config"));
- String framework = parser.get<String>("framework");
- int backendId = parser.get<int>("backend");
- int targetId = parser.get<int>("target");
- // Open file with classes names.
- if (parser.has("classes"))
- {
- std::string file = parser.get<String>("classes");
- std::ifstream ifs(file.c_str());
- if (!ifs.is_open())
- CV_Error(Error::StsError, "File " + file + " not found");
- std::string line;
- while (std::getline(ifs, line))
- {
- classes.push_back(line);
- }
- }
- // Open file with colors.
- if (parser.has("colors"))
- {
- std::string file = parser.get<String>("colors");
- std::ifstream ifs(file.c_str());
- if (!ifs.is_open())
- CV_Error(Error::StsError, "File " + file + " not found");
- std::string line;
- while (std::getline(ifs, line))
- {
- std::istringstream colorStr(line.c_str());
- Vec3b color;
- for (int i = 0; i < 3 && !colorStr.eof(); ++i)
- colorStr >> color[i];
- colors.push_back(color);
- }
- }
- if (!parser.check())
- {
- parser.printErrors();
- return 1;
- }
- CV_Assert(!model.empty());
- //! [Read and initialize network]
- Net net = readNet(model, config, framework);
- net.setPreferableBackend(backendId);
- net.setPreferableTarget(targetId);
- //! [Read and initialize network]
- // Create a window
- static const std::string kWinName = "Deep learning semantic segmentation in OpenCV";
- namedWindow(kWinName, WINDOW_NORMAL);
- //! [Open a video file or an image file or a camera stream]
- VideoCapture cap;
- if (parser.has("input"))
- cap.open(parser.get<String>("input"));
- else
- cap.open(parser.get<int>("device"));
- //! [Open a video file or an image file or a camera stream]
- // Process frames.
- Mat frame, blob;
- while (waitKey(1) < 0)
- {
- cap >> frame;
- if (frame.empty())
- {
- waitKey();
- break;
- }
- //! [Create a 4D blob from a frame]
- blobFromImage(frame, blob, scale, Size(inpWidth, inpHeight), mean, swapRB, false);
- //! [Create a 4D blob from a frame]
- //! [Set input blob]
- net.setInput(blob);
- //! [Set input blob]
- //! [Make forward pass]
- Mat score = net.forward();
- //! [Make forward pass]
- Mat segm;
- colorizeSegmentation(score, segm);
- resize(segm, segm, frame.size(), 0, 0, INTER_NEAREST);
- addWeighted(frame, 0.1, segm, 0.9, 0.0, frame);
- // Put efficiency information.
- std::vector<double> layersTimes;
- double freq = getTickFrequency() / 1000;
- double t = net.getPerfProfile(layersTimes) / freq;
- std::string label = format("Inference time: %.2f ms", t);
- putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
- imshow(kWinName, frame);
- if (!classes.empty())
- showLegend();
- }
- return 0;
- }
- void colorizeSegmentation(const Mat &score, Mat &segm)
- {
- const int rows = score.size[2];
- const int cols = score.size[3];
- const int chns = score.size[1];
- if (colors.empty())
- {
- // Generate colors.
- colors.push_back(Vec3b());
- for (int i = 1; i < chns; ++i)
- {
- Vec3b color;
- for (int j = 0; j < 3; ++j)
- color[j] = (colors[i - 1][j] + rand() % 256) / 2;
- colors.push_back(color);
- }
- }
- else if (chns != (int)colors.size())
- {
- CV_Error(Error::StsError, format("Number of output classes does not match "
- "number of colors (%d != %zu)", chns, colors.size()));
- }
- Mat maxCl = Mat::zeros(rows, cols, CV_8UC1);
- Mat maxVal(rows, cols, CV_32FC1, score.data);
- for (int ch = 1; ch < chns; ch++)
- {
- for (int row = 0; row < rows; row++)
- {
- const float *ptrScore = score.ptr<float>(0, ch, row);
- uint8_t *ptrMaxCl = maxCl.ptr<uint8_t>(row);
- float *ptrMaxVal = maxVal.ptr<float>(row);
- for (int col = 0; col < cols; col++)
- {
- if (ptrScore[col] > ptrMaxVal[col])
- {
- ptrMaxVal[col] = ptrScore[col];
- ptrMaxCl[col] = (uchar)ch;
- }
- }
- }
- }
- segm.create(rows, cols, CV_8UC3);
- for (int row = 0; row < rows; row++)
- {
- const uchar *ptrMaxCl = maxCl.ptr<uchar>(row);
- Vec3b *ptrSegm = segm.ptr<Vec3b>(row);
- for (int col = 0; col < cols; col++)
- {
- ptrSegm[col] = colors[ptrMaxCl[col]];
- }
- }
- }
- void showLegend()
- {
- static const int kBlockHeight = 30;
- static Mat legend;
- if (legend.empty())
- {
- const int numClasses = (int)classes.size();
- if ((int)colors.size() != numClasses)
- {
- CV_Error(Error::StsError, format("Number of output classes does not match "
- "number of labels (%zu != %zu)", colors.size(), classes.size()));
- }
- legend.create(kBlockHeight * numClasses, 200, CV_8UC3);
- for (int i = 0; i < numClasses; i++)
- {
- Mat block = legend.rowRange(i * kBlockHeight, (i + 1) * kBlockHeight);
- block.setTo(colors[i]);
- putText(block, classes[i], Point(0, kBlockHeight / 2), FONT_HERSHEY_SIMPLEX, 0.5, Vec3b(255, 255, 255));
- }
- namedWindow("Legend", WINDOW_NORMAL);
- imshow("Legend", legend);
- }
- }
|