123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240 |
- #!/usr/bin/env python
- '''
- You can download a baseline ReID model and sample input from:
- https://github.com/ReID-Team/ReID_extra_testdata
- Authors of samples and Youtu ReID baseline:
- Xing Sun <winfredsun@tencent.com>
- Feng Zheng <zhengf@sustech.edu.cn>
- Xinyang Jiang <sevjiang@tencent.com>
- Fufu Yu <fufuyu@tencent.com>
- Enwei Zhang <miyozhang@tencent.com>
- Copyright (C) 2020-2021, Tencent.
- Copyright (C) 2020-2021, SUSTech.
- '''
- import argparse
- import os.path
- import numpy as np
- import cv2 as cv
- backends = (cv.dnn.DNN_BACKEND_DEFAULT,
- cv.dnn.DNN_BACKEND_INFERENCE_ENGINE,
- cv.dnn.DNN_BACKEND_OPENCV,
- cv.dnn.DNN_BACKEND_VKCOM,
- cv.dnn.DNN_BACKEND_CUDA)
- targets = (cv.dnn.DNN_TARGET_CPU,
- cv.dnn.DNN_TARGET_OPENCL,
- cv.dnn.DNN_TARGET_OPENCL_FP16,
- cv.dnn.DNN_TARGET_MYRIAD,
- cv.dnn.DNN_TARGET_HDDL,
- cv.dnn.DNN_TARGET_VULKAN,
- cv.dnn.DNN_TARGET_CUDA,
- cv.dnn.DNN_TARGET_CUDA_FP16)
- MEAN = (0.485, 0.456, 0.406)
- STD = (0.229, 0.224, 0.225)
- def preprocess(images, height, width):
- """
- Create 4-dimensional blob from image
- :param image: input image
- :param height: the height of the resized input image
- :param width: the width of the resized input image
- """
- img_list = []
- for image in images:
- image = cv.resize(image, (width, height))
- img_list.append(image[:, :, ::-1])
- images = np.array(img_list)
- images = (images / 255.0 - MEAN) / STD
- input = cv.dnn.blobFromImages(images.astype(np.float32), ddepth = cv.CV_32F)
- return input
- def extract_feature(img_dir, model_path, batch_size = 32, resize_h = 384, resize_w = 128, backend=cv.dnn.DNN_BACKEND_OPENCV, target=cv.dnn.DNN_TARGET_CPU):
- """
- Extract features from images in a target directory
- :param img_dir: the input image directory
- :param model_path: path to ReID model
- :param batch_size: the batch size for each network inference iteration
- :param resize_h: the height of the input image
- :param resize_w: the width of the input image
- :param backend: name of computation backend
- :param target: name of computation target
- """
- feat_list = []
- path_list = os.listdir(img_dir)
- path_list = [os.path.join(img_dir, img_name) for img_name in path_list]
- count = 0
- for i in range(0, len(path_list), batch_size):
- print('Feature Extraction for images in', img_dir, 'Batch:', count, '/', len(path_list))
- batch = path_list[i : min(i + batch_size, len(path_list))]
- imgs = read_data(batch)
- inputs = preprocess(imgs, resize_h, resize_w)
- feat = run_net(inputs, model_path, backend, target)
- feat_list.append(feat)
- count += batch_size
- feats = np.concatenate(feat_list, axis = 0)
- return feats, path_list
- def run_net(inputs, model_path, backend=cv.dnn.DNN_BACKEND_OPENCV, target=cv.dnn.DNN_TARGET_CPU):
- """
- Forword propagation for a batch of images.
- :param inputs: input batch of images
- :param model_path: path to ReID model
- :param backend: name of computation backend
- :param target: name of computation target
- """
- net = cv.dnn.readNet(model_path)
- net.setPreferableBackend(backend)
- net.setPreferableTarget(target)
- net.setInput(inputs)
- out = net.forward()
- out = np.reshape(out, (out.shape[0], out.shape[1]))
- return out
- def read_data(path_list):
- """
- Read all images from a directory into a list
- :param path_list: the list of image path
- """
- img_list = []
- for img_path in path_list:
- img = cv.imread(img_path)
- if img is None:
- continue
- img_list.append(img)
- return img_list
- def normalize(nparray, order=2, axis=0):
- """
- Normalize a N-D numpy array along the specified axis.
- :param nparry: the array of vectors to be normalized
- :param order: order of the norm
- :param axis: the axis of x along which to compute the vector norms
- """
- norm = np.linalg.norm(nparray, ord=order, axis=axis, keepdims=True)
- return nparray / (norm + np.finfo(np.float32).eps)
- def similarity(array1, array2):
- """
- Compute the euclidean or cosine distance of all pairs.
- :param array1: numpy array with shape [m1, n]
- :param array2: numpy array with shape [m2, n]
- Returns:
- numpy array with shape [m1, m2]
- """
- array1 = normalize(array1, axis=1)
- array2 = normalize(array2, axis=1)
- dist = np.matmul(array1, array2.T)
- return dist
- def topk(query_feat, gallery_feat, topk = 5):
- """
- Return the index of top K gallery images most similar to the query images
- :param query_feat: array of feature vectors of query images
- :param gallery_feat: array of feature vectors of gallery images
- :param topk: number of gallery images to return
- """
- sim = similarity(query_feat, gallery_feat)
- index = np.argsort(-sim, axis = 1)
- return [i[0:int(topk)] for i in index]
- def drawRankList(query_name, gallery_list, output_size = (128, 384)):
- """
- Draw the rank list
- :param query_name: path of the query image
- :param gallery_name: path of the gallery image
- "param output_size: the output size of each image in the rank list
- """
- def addBorder(im, color):
- bordersize = 5
- border = cv.copyMakeBorder(
- im,
- top = bordersize,
- bottom = bordersize,
- left = bordersize,
- right = bordersize,
- borderType = cv.BORDER_CONSTANT,
- value = color
- )
- return border
- query_img = cv.imread(query_name)
- query_img = cv.resize(query_img, output_size)
- query_img = addBorder(query_img, [0, 0, 0])
- cv.putText(query_img, 'Query', (10, 30), cv.FONT_HERSHEY_COMPLEX, 1., (0,255,0), 2)
- gallery_img_list = []
- for i, gallery_name in enumerate(gallery_list):
- gallery_img = cv.imread(gallery_name)
- gallery_img = cv.resize(gallery_img, output_size)
- gallery_img = addBorder(gallery_img, [255, 255, 255])
- cv.putText(gallery_img, 'G%02d'%i, (10, 30), cv.FONT_HERSHEY_COMPLEX, 1., (0,255,0), 2)
- gallery_img_list.append(gallery_img)
- ret = np.concatenate([query_img] + gallery_img_list, axis = 1)
- return ret
- def visualization(topk_idx, query_names, gallery_names, output_dir = 'vis'):
- """
- Visualize the retrieval results with the person ReID model
- :param topk_idx: the index of ranked gallery images for each query image
- :param query_names: the list of paths of query images
- :param gallery_names: the list of paths of gallery images
- :param output_dir: the path to save the visualize results
- """
- if not os.path.exists(output_dir):
- os.mkdir(output_dir)
- for i, idx in enumerate(topk_idx):
- query_name = query_names[i]
- topk_names = [gallery_names[j] for j in idx]
- vis_img = drawRankList(query_name, topk_names)
- output_path = os.path.join(output_dir, '%03d_%s'%(i, os.path.basename(query_name)))
- cv.imwrite(output_path, vis_img)
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='Use this script to run human parsing using JPPNet',
- formatter_class=argparse.ArgumentDefaultsHelpFormatter)
- parser.add_argument('--query_dir', '-q', required=True, help='Path to query image.')
- parser.add_argument('--gallery_dir', '-g', required=True, help='Path to gallery directory.')
- parser.add_argument('--resize_h', default = 256, help='The height of the input for model inference.')
- parser.add_argument('--resize_w', default = 128, help='The width of the input for model inference')
- parser.add_argument('--model', '-m', default='reid.onnx', help='Path to pb model.')
- parser.add_argument('--visualization_dir', default='vis', help='Path for the visualization results')
- parser.add_argument('--topk', default=10, help='Number of images visualized in the rank list')
- parser.add_argument('--batchsize', default=32, help='The batch size of each inference')
- parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
- help="Choose one of computation backends: "
- "%d: automatically (by default), "
- "%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
- "%d: OpenCV implementation, "
- "%d: VKCOM, "
- "%d: CUDA backend"% backends)
- parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
- help='Choose one of target computation devices: '
- '%d: CPU target (by default), '
- '%d: OpenCL, '
- '%d: OpenCL fp16 (half-float precision), '
- '%d: NCS2 VPU, '
- '%d: HDDL VPU, '
- '%d: Vulkan, '
- '%d: CUDA, '
- '%d: CUDA FP16'
- % targets)
- args, _ = parser.parse_known_args()
- if not os.path.isfile(args.model):
- raise OSError("Model not exist")
- query_feat, query_names = extract_feature(args.query_dir, args.model, args.batchsize, args.resize_h, args.resize_w, args.backend, args.target)
- gallery_feat, gallery_names = extract_feature(args.gallery_dir, args.model, args.batchsize, args.resize_h, args.resize_w, args.backend, args.target)
- topk_idx = topk(query_feat, gallery_feat, args.topk)
- visualization(topk_idx, query_names, gallery_names, output_dir = args.visualization_dir)
|