123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242 |
- //
- // You can download a baseline ReID model and sample input from:
- // https://github.com/ReID-Team/ReID_extra_testdata
- //
- // Authors of samples and Youtu ReID baseline:
- // Xing Sun <winfredsun@tencent.com>
- // Feng Zheng <zhengf@sustech.edu.cn>
- // Xinyang Jiang <sevjiang@tencent.com>
- // Fufu Yu <fufuyu@tencent.com>
- // Enwei Zhang <miyozhang@tencent.com>
- //
- // Copyright (C) 2020-2021, Tencent.
- // Copyright (C) 2020-2021, SUSTech.
- //
- #include <iostream>
- #include <fstream>
- #include <opencv2/imgproc.hpp>
- #include <opencv2/highgui.hpp>
- #include <opencv2/dnn.hpp>
- using namespace cv;
- using namespace cv::dnn;
- const char* keys =
- "{help h | | show help message}"
- "{model m | | network model}"
- "{query_list q | | list of query images}"
- "{gallery_list g | | list of gallery images}"
- "{batch_size | 32 | batch size of each inference}"
- "{resize_h | 256 | resize input to specific height.}"
- "{resize_w | 128 | resize input to specific width.}"
- "{topk k | 5 | number of gallery images showed in visualization}"
- "{output_dir | | path for visualization(it should be existed)}"
- "{backend b | 0 | choose one of computation backends: "
- "0: automatically (by default), "
- "1: Halide language (http://halide-lang.org/), "
- "2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
- "3: OpenCV implementation, "
- "4: VKCOM, "
- "5: CUDA }"
- "{target t | 0 | choose one of target computation devices: "
- "0: CPU target (by default), "
- "1: OpenCL, "
- "2: OpenCL fp16 (half-float precision), "
- "4: Vulkan, "
- "6: CUDA, "
- "7: CUDA fp16 (half-float preprocess) }";
- namespace cv{
- namespace reid{
- static Mat preprocess(const Mat& img)
- {
- const double mean[3] = {0.485, 0.456, 0.406};
- const double std[3] = {0.229, 0.224, 0.225};
- Mat ret = Mat(img.rows, img.cols, CV_32FC3);
- for (int y = 0; y < ret.rows; y ++)
- {
- for (int x = 0; x < ret.cols; x++)
- {
- for (int c = 0; c < 3; c++)
- {
- ret.at<Vec3f>(y,x)[c] = (float)((img.at<Vec3b>(y,x)[c] / 255.0 - mean[2 - c]) / std[2 - c]);
- }
- }
- }
- return ret;
- }
- static std::vector<float> normalization(const std::vector<float>& feature)
- {
- std::vector<float> ret;
- float sum = 0.0;
- for(int i = 0; i < (int)feature.size(); i++)
- {
- sum += feature[i] * feature[i];
- }
- sum = sqrt(sum);
- for(int i = 0; i < (int)feature.size(); i++)
- {
- ret.push_back(feature[i] / sum);
- }
- return ret;
- }
- static void extractFeatures(const std::vector<std::string>& imglist, Net* net, const int& batch_size, const int& resize_h, const int& resize_w, std::vector<std::vector<float>>& features)
- {
- for(int st = 0; st < (int)imglist.size(); st += batch_size)
- {
- std::vector<Mat> batch;
- for(int delta = 0; delta < batch_size && st + delta < (int)imglist.size(); delta++)
- {
- Mat img = imread(imglist[st + delta]);
- batch.push_back(preprocess(img));
- }
- Mat blob = dnn::blobFromImages(batch, 1.0, Size(resize_w, resize_h), Scalar(0.0,0.0,0.0), true, false, CV_32F);
- net->setInput(blob);
- Mat out = net->forward();
- for(int i = 0; i < (int)out.size().height; i++)
- {
- std::vector<float> temp_feature;
- for(int j = 0; j < (int)out.size().width; j++)
- {
- temp_feature.push_back(out.at<float>(i,j));
- }
- features.push_back(normalization(temp_feature));
- }
- }
- return ;
- }
- static void getNames(const std::string& ImageList, std::vector<std::string>& result)
- {
- std::ifstream img_in(ImageList);
- std::string img_name;
- while(img_in >> img_name)
- {
- result.push_back(img_name);
- }
- return ;
- }
- static float similarity(const std::vector<float>& feature1, const std::vector<float>& feature2)
- {
- float result = 0.0;
- for(int i = 0; i < (int)feature1.size(); i++)
- {
- result += feature1[i] * feature2[i];
- }
- return result;
- }
- static void getTopK(const std::vector<std::vector<float>>& queryFeatures, const std::vector<std::vector<float>>& galleryFeatures, const int& topk, std::vector<std::vector<int>>& result)
- {
- for(int i = 0; i < (int)queryFeatures.size(); i++)
- {
- std::vector<float> similarityList;
- std::vector<int> index;
- for(int j = 0; j < (int)galleryFeatures.size(); j++)
- {
- similarityList.push_back(similarity(queryFeatures[i], galleryFeatures[j]));
- index.push_back(j);
- }
- sort(index.begin(), index.end(), [&](int x,int y){return similarityList[x] > similarityList[y];});
- std::vector<int> topk_result;
- for(int j = 0; j < min(topk, (int)index.size()); j++)
- {
- topk_result.push_back(index[j]);
- }
- result.push_back(topk_result);
- }
- return ;
- }
- static void addBorder(const Mat& img, const Scalar& color, Mat& result)
- {
- const int bordersize = 5;
- copyMakeBorder(img, result, bordersize, bordersize, bordersize, bordersize, cv::BORDER_CONSTANT, color);
- return ;
- }
- static void drawRankList(const std::string& queryName, const std::vector<std::string>& galleryImageNames, const std::vector<int>& topk_index, const int& resize_h, const int& resize_w, Mat& result)
- {
- const Size outputSize = Size(resize_w, resize_h);
- Mat q_img = imread(queryName), temp_img;
- resize(q_img, temp_img, outputSize);
- addBorder(temp_img, Scalar(0,0,0), q_img);
- putText(q_img, "Query", Point(10, 30), FONT_HERSHEY_COMPLEX, 1.0, Scalar(0,255,0), 2);
- std::vector<Mat> Images;
- Images.push_back(q_img);
- for(int i = 0; i < (int)topk_index.size(); i++)
- {
- Mat g_img = imread(galleryImageNames[topk_index[i]]);
- resize(g_img, temp_img, outputSize);
- addBorder(temp_img, Scalar(255,255,255), g_img);
- putText(g_img, "G" + std::to_string(i), Point(10, 30), FONT_HERSHEY_COMPLEX, 1.0, Scalar(0,255,0), 2);
- Images.push_back(g_img);
- }
- hconcat(Images, result);
- return ;
- }
- static void visualization(const std::vector<std::vector<int>>& topk, const std::vector<std::string>& queryImageNames, const std::vector<std::string>& galleryImageNames, const std::string& output_dir, const int& resize_h, const int& resize_w)
- {
- for(int i = 0; i < (int)queryImageNames.size(); i++)
- {
- Mat img;
- drawRankList(queryImageNames[i], galleryImageNames, topk[i], resize_h, resize_w, img);
- std::string output_path = output_dir + "/" + queryImageNames[i].substr(queryImageNames[i].rfind("/")+1);
- imwrite(output_path, img);
- }
- return ;
- }
- };
- };
- int main(int argc, char** argv)
- {
- // Parse command line arguments.
- CommandLineParser parser(argc, argv, keys);
- if (argc == 1 || parser.has("help"))
- {
- parser.printMessage();
- return 0;
- }
- parser = CommandLineParser(argc, argv, keys);
- parser.about("Use this script to run ReID networks using OpenCV.");
- const std::string modelPath = parser.get<String>("model");
- const std::string queryImageList = parser.get<String>("query_list");
- const std::string galleryImageList = parser.get<String>("gallery_list");
- const int backend = parser.get<int>("backend");
- const int target = parser.get<int>("target");
- const int batch_size = parser.get<int>("batch_size");
- const int resize_h = parser.get<int>("resize_h");
- const int resize_w = parser.get<int>("resize_w");
- const int topk = parser.get<int>("topk");
- const std::string output_dir= parser.get<String>("output_dir");
- std::vector<std::string> queryImageNames;
- reid::getNames(queryImageList, queryImageNames);
- std::vector<std::string> galleryImageNames;
- reid::getNames(galleryImageList, galleryImageNames);
- dnn::Net net = dnn::readNet(modelPath);
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- std::vector<std::vector<float>> queryFeatures;
- reid::extractFeatures(queryImageNames, &net, batch_size, resize_h, resize_w, queryFeatures);
- std::vector<std::vector<float>> galleryFeatures;
- reid::extractFeatures(galleryImageNames, &net, batch_size, resize_h, resize_w, galleryFeatures);
- std::vector<std::vector<int>> topkResult;
- reid::getTopK(queryFeatures, galleryFeatures, topk, topkResult);
- reid::visualization(topkResult, queryImageNames, galleryImageNames, output_dir, resize_h, resize_w);
- return 0;
- }
|