123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 |
- //
- // this sample demonstrates the use of pretrained openpose networks with opencv's dnn module.
- //
- // it can be used for body pose detection, using either the COCO model(18 parts):
- // http://posefs1.perception.cs.cmu.edu/OpenPose/models/pose/coco/pose_iter_440000.caffemodel
- // https://raw.githubusercontent.com/opencv/opencv_extra/4.x/testdata/dnn/openpose_pose_coco.prototxt
- //
- // or the MPI model(16 parts):
- // http://posefs1.perception.cs.cmu.edu/OpenPose/models/pose/mpi/pose_iter_160000.caffemodel
- // https://raw.githubusercontent.com/opencv/opencv_extra/4.x/testdata/dnn/openpose_pose_mpi_faster_4_stages.prototxt
- //
- // (to simplify this sample, the body models are restricted to a single person.)
- //
- //
- // you can also try the hand pose model:
- // http://posefs1.perception.cs.cmu.edu/OpenPose/models/hand/pose_iter_102000.caffemodel
- // https://raw.githubusercontent.com/CMU-Perceptual-Computing-Lab/openpose/master/models/hand/pose_deploy.prototxt
- //
- #include <opencv2/dnn.hpp>
- #include <opencv2/imgproc.hpp>
- #include <opencv2/highgui.hpp>
- using namespace cv;
- using namespace cv::dnn;
- #include <iostream>
- using namespace std;
- // connection table, in the format [model_id][pair_id][from/to]
- // please look at the nice explanation at the bottom of:
- // https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/output.md
- //
- const int POSE_PAIRS[3][20][2] = {
- { // COCO body
- {1,2}, {1,5}, {2,3},
- {3,4}, {5,6}, {6,7},
- {1,8}, {8,9}, {9,10},
- {1,11}, {11,12}, {12,13},
- {1,0}, {0,14},
- {14,16}, {0,15}, {15,17}
- },
- { // MPI body
- {0,1}, {1,2}, {2,3},
- {3,4}, {1,5}, {5,6},
- {6,7}, {1,14}, {14,8}, {8,9},
- {9,10}, {14,11}, {11,12}, {12,13}
- },
- { // hand
- {0,1}, {1,2}, {2,3}, {3,4}, // thumb
- {0,5}, {5,6}, {6,7}, {7,8}, // pinkie
- {0,9}, {9,10}, {10,11}, {11,12}, // middle
- {0,13}, {13,14}, {14,15}, {15,16}, // ring
- {0,17}, {17,18}, {18,19}, {19,20} // small
- }};
- int main(int argc, char **argv)
- {
- CommandLineParser parser(argc, argv,
- "{ h help | false | print this help message }"
- "{ p proto | | (required) model configuration, e.g. hand/pose.prototxt }"
- "{ m model | | (required) model weights, e.g. hand/pose_iter_102000.caffemodel }"
- "{ i image | | (required) path to image file (containing a single person, or hand) }"
- "{ d dataset | | specify what kind of model was trained. It could be (COCO, MPI, HAND) depends on dataset. }"
- "{ width | 368 | Preprocess input image by resizing to a specific width. }"
- "{ height | 368 | Preprocess input image by resizing to a specific height. }"
- "{ t threshold | 0.1 | threshold or confidence value for the heatmap }"
- "{ s scale | 0.003922 | scale for blob }"
- );
- String modelTxt = samples::findFile(parser.get<string>("proto"));
- String modelBin = samples::findFile(parser.get<string>("model"));
- String imageFile = samples::findFile(parser.get<String>("image"));
- String dataset = parser.get<String>("dataset");
- int W_in = parser.get<int>("width");
- int H_in = parser.get<int>("height");
- float thresh = parser.get<float>("threshold");
- float scale = parser.get<float>("scale");
- if (parser.get<bool>("help") || modelTxt.empty() || modelBin.empty() || imageFile.empty())
- {
- cout << "A sample app to demonstrate human or hand pose detection with a pretrained OpenPose dnn." << endl;
- parser.printMessage();
- return 0;
- }
- int midx, npairs, nparts;
- if (!dataset.compare("COCO")) { midx = 0; npairs = 17; nparts = 18; }
- else if (!dataset.compare("MPI")) { midx = 1; npairs = 14; nparts = 16; }
- else if (!dataset.compare("HAND")) { midx = 2; npairs = 20; nparts = 22; }
- else
- {
- std::cerr << "Can't interpret dataset parameter: " << dataset << std::endl;
- exit(-1);
- }
- // read the network model
- Net net = readNet(modelBin, modelTxt);
- // and the image
- Mat img = imread(imageFile);
- if (img.empty())
- {
- std::cerr << "Can't read image from the file: " << imageFile << std::endl;
- exit(-1);
- }
- // send it through the network
- Mat inputBlob = blobFromImage(img, scale, Size(W_in, H_in), Scalar(0, 0, 0), false, false);
- net.setInput(inputBlob);
- Mat result = net.forward();
- // the result is an array of "heatmaps", the probability of a body part being in location x,y
- int H = result.size[2];
- int W = result.size[3];
- // find the position of the body parts
- vector<Point> points(22);
- for (int n=0; n<nparts; n++)
- {
- // Slice heatmap of corresponding body's part.
- Mat heatMap(H, W, CV_32F, result.ptr(0,n));
- // 1 maximum per heatmap
- Point p(-1,-1),pm;
- double conf;
- minMaxLoc(heatMap, 0, &conf, 0, &pm);
- if (conf > thresh)
- p = pm;
- points[n] = p;
- }
- // connect body parts and draw it !
- float SX = float(img.cols) / W;
- float SY = float(img.rows) / H;
- for (int n=0; n<npairs; n++)
- {
- // lookup 2 connected body/hand parts
- Point2f a = points[POSE_PAIRS[midx][n][0]];
- Point2f b = points[POSE_PAIRS[midx][n][1]];
- // we did not find enough confidence before
- if (a.x<=0 || a.y<=0 || b.x<=0 || b.y<=0)
- continue;
- // scale to image size
- a.x*=SX; a.y*=SY;
- b.x*=SX; b.y*=SY;
- line(img, a, b, Scalar(0,200,0), 2);
- circle(img, a, 3, Scalar(0,0,200), -1);
- circle(img, b, 3, Scalar(0,0,200), -1);
- }
- imshow("OpenPose", img);
- waitKey();
- return 0;
- }
|