123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329 |
- import cv2 as cv
- import argparse
- import numpy as np
- import sys
- import time
- from threading import Thread
- if sys.version_info[0] == 2:
- import Queue as queue
- else:
- import queue
- from common import *
- from tf_text_graph_common import readTextMessage
- from tf_text_graph_ssd import createSSDGraph
- from tf_text_graph_faster_rcnn import createFasterRCNNGraph
- backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV,
- cv.dnn.DNN_BACKEND_VKCOM, cv.dnn.DNN_BACKEND_CUDA)
- targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD, cv.dnn.DNN_TARGET_HDDL,
- cv.dnn.DNN_TARGET_VULKAN, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16)
- parser = argparse.ArgumentParser(add_help=False)
- parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
- help='An optional path to file with preprocessing parameters.')
- parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
- parser.add_argument('--out_tf_graph', default='graph.pbtxt',
- help='For models from TensorFlow Object Detection API, you may '
- 'pass a .config file which was used for training through --config '
- 'argument. This way an additional .pbtxt file with TensorFlow graph will be created.')
- parser.add_argument('--framework', choices=['caffe', 'tensorflow', 'torch', 'darknet', 'dldt'],
- help='Optional name of an origin framework of the model. '
- 'Detect it automatically if it does not set.')
- parser.add_argument('--thr', type=float, default=0.5, help='Confidence threshold')
- parser.add_argument('--nms', type=float, default=0.4, help='Non-maximum suppression threshold')
- parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
- help="Choose one of computation backends: "
- "%d: automatically (by default), "
- "%d: Halide language (http://halide-lang.org/), "
- "%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
- "%d: OpenCV implementation, "
- "%d: VKCOM, "
- "%d: CUDA" % backends)
- parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
- help='Choose one of target computation devices: '
- '%d: CPU target (by default), '
- '%d: OpenCL, '
- '%d: OpenCL fp16 (half-float precision), '
- '%d: NCS2 VPU, '
- '%d: HDDL VPU, '
- '%d: Vulkan, '
- '%d: CUDA, '
- '%d: CUDA fp16 (half-float preprocess)' % targets)
- parser.add_argument('--async', type=int, default=0,
- dest='asyncN',
- help='Number of asynchronous forwards at the same time. '
- 'Choose 0 for synchronous mode')
- args, _ = parser.parse_known_args()
- add_preproc_args(args.zoo, parser, 'object_detection')
- parser = argparse.ArgumentParser(parents=[parser],
- description='Use this script to run object detection deep learning networks using OpenCV.',
- formatter_class=argparse.ArgumentDefaultsHelpFormatter)
- args = parser.parse_args()
- args.model = findFile(args.model)
- args.config = findFile(args.config)
- args.classes = findFile(args.classes)
- # If config specified, try to load it as TensorFlow Object Detection API's pipeline.
- config = readTextMessage(args.config)
- if 'model' in config:
- print('TensorFlow Object Detection API config detected')
- if 'ssd' in config['model'][0]:
- print('Preparing text graph representation for SSD model: ' + args.out_tf_graph)
- createSSDGraph(args.model, args.config, args.out_tf_graph)
- args.config = args.out_tf_graph
- elif 'faster_rcnn' in config['model'][0]:
- print('Preparing text graph representation for Faster-RCNN model: ' + args.out_tf_graph)
- createFasterRCNNGraph(args.model, args.config, args.out_tf_graph)
- args.config = args.out_tf_graph
- # Load names of classes
- classes = None
- if args.classes:
- with open(args.classes, 'rt') as f:
- classes = f.read().rstrip('\n').split('\n')
- # Load a network
- net = cv.dnn.readNet(cv.samples.findFile(args.model), cv.samples.findFile(args.config), args.framework)
- net.setPreferableBackend(args.backend)
- net.setPreferableTarget(args.target)
- outNames = net.getUnconnectedOutLayersNames()
- confThreshold = args.thr
- nmsThreshold = args.nms
- def postprocess(frame, outs):
- frameHeight = frame.shape[0]
- frameWidth = frame.shape[1]
- def drawPred(classId, conf, left, top, right, bottom):
- # Draw a bounding box.
- cv.rectangle(frame, (left, top), (right, bottom), (0, 255, 0))
- label = '%.2f' % conf
- # Print a label of class.
- if classes:
- assert(classId < len(classes))
- label = '%s: %s' % (classes[classId], label)
- labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
- top = max(top, labelSize[1])
- cv.rectangle(frame, (left, top - labelSize[1]), (left + labelSize[0], top + baseLine), (255, 255, 255), cv.FILLED)
- cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
- layerNames = net.getLayerNames()
- lastLayerId = net.getLayerId(layerNames[-1])
- lastLayer = net.getLayer(lastLayerId)
- classIds = []
- confidences = []
- boxes = []
- if lastLayer.type == 'DetectionOutput':
- # Network produces output blob with a shape 1x1xNx7 where N is a number of
- # detections and an every detection is a vector of values
- # [batchId, classId, confidence, left, top, right, bottom]
- for out in outs:
- for detection in out[0, 0]:
- confidence = detection[2]
- if confidence > confThreshold:
- left = int(detection[3])
- top = int(detection[4])
- right = int(detection[5])
- bottom = int(detection[6])
- width = right - left + 1
- height = bottom - top + 1
- if width <= 2 or height <= 2:
- left = int(detection[3] * frameWidth)
- top = int(detection[4] * frameHeight)
- right = int(detection[5] * frameWidth)
- bottom = int(detection[6] * frameHeight)
- width = right - left + 1
- height = bottom - top + 1
- classIds.append(int(detection[1]) - 1) # Skip background label
- confidences.append(float(confidence))
- boxes.append([left, top, width, height])
- elif lastLayer.type == 'Region':
- # Network produces output blob with a shape NxC where N is a number of
- # detected objects and C is a number of classes + 4 where the first 4
- # numbers are [center_x, center_y, width, height]
- for out in outs:
- for detection in out:
- scores = detection[5:]
- classId = np.argmax(scores)
- confidence = scores[classId]
- if confidence > confThreshold:
- center_x = int(detection[0] * frameWidth)
- center_y = int(detection[1] * frameHeight)
- width = int(detection[2] * frameWidth)
- height = int(detection[3] * frameHeight)
- left = int(center_x - width / 2)
- top = int(center_y - height / 2)
- classIds.append(classId)
- confidences.append(float(confidence))
- boxes.append([left, top, width, height])
- else:
- print('Unknown output layer type: ' + lastLayer.type)
- exit()
- # NMS is used inside Region layer only on DNN_BACKEND_OPENCV for another backends we need NMS in sample
- # or NMS is required if number of outputs > 1
- if len(outNames) > 1 or lastLayer.type == 'Region' and args.backend != cv.dnn.DNN_BACKEND_OPENCV:
- indices = []
- classIds = np.array(classIds)
- boxes = np.array(boxes)
- confidences = np.array(confidences)
- unique_classes = set(classIds)
- for cl in unique_classes:
- class_indices = np.where(classIds == cl)[0]
- conf = confidences[class_indices]
- box = boxes[class_indices].tolist()
- nms_indices = cv.dnn.NMSBoxes(box, conf, confThreshold, nmsThreshold)
- nms_indices = nms_indices[:, 0] if len(nms_indices) else []
- indices.extend(class_indices[nms_indices])
- else:
- indices = np.arange(0, len(classIds))
- for i in indices:
- box = boxes[i]
- left = box[0]
- top = box[1]
- width = box[2]
- height = box[3]
- drawPred(classIds[i], confidences[i], left, top, left + width, top + height)
- # Process inputs
- winName = 'Deep learning object detection in OpenCV'
- cv.namedWindow(winName, cv.WINDOW_NORMAL)
- def callback(pos):
- global confThreshold
- confThreshold = pos / 100.0
- cv.createTrackbar('Confidence threshold, %', winName, int(confThreshold * 100), 99, callback)
- cap = cv.VideoCapture(cv.samples.findFileOrKeep(args.input) if args.input else 0)
- class QueueFPS(queue.Queue):
- def __init__(self):
- queue.Queue.__init__(self)
- self.startTime = 0
- self.counter = 0
- def put(self, v):
- queue.Queue.put(self, v)
- self.counter += 1
- if self.counter == 1:
- self.startTime = time.time()
- def getFPS(self):
- return self.counter / (time.time() - self.startTime)
- process = True
- #
- # Frames capturing thread
- #
- framesQueue = QueueFPS()
- def framesThreadBody():
- global framesQueue, process
- while process:
- hasFrame, frame = cap.read()
- if not hasFrame:
- break
- framesQueue.put(frame)
- #
- # Frames processing thread
- #
- processedFramesQueue = queue.Queue()
- predictionsQueue = QueueFPS()
- def processingThreadBody():
- global processedFramesQueue, predictionsQueue, args, process
- futureOutputs = []
- while process:
- # Get a next frame
- frame = None
- try:
- frame = framesQueue.get_nowait()
- if args.asyncN:
- if len(futureOutputs) == args.asyncN:
- frame = None # Skip the frame
- else:
- framesQueue.queue.clear() # Skip the rest of frames
- except queue.Empty:
- pass
- if not frame is None:
- frameHeight = frame.shape[0]
- frameWidth = frame.shape[1]
- # Create a 4D blob from a frame.
- inpWidth = args.width if args.width else frameWidth
- inpHeight = args.height if args.height else frameHeight
- blob = cv.dnn.blobFromImage(frame, size=(inpWidth, inpHeight), swapRB=args.rgb, ddepth=cv.CV_8U)
- processedFramesQueue.put(frame)
- # Run a model
- net.setInput(blob, scalefactor=args.scale, mean=args.mean)
- if net.getLayer(0).outputNameToIndex('im_info') != -1: # Faster-RCNN or R-FCN
- frame = cv.resize(frame, (inpWidth, inpHeight))
- net.setInput(np.array([[inpHeight, inpWidth, 1.6]], dtype=np.float32), 'im_info')
- if args.asyncN:
- futureOutputs.append(net.forwardAsync())
- else:
- outs = net.forward(outNames)
- predictionsQueue.put(np.copy(outs))
- while futureOutputs and futureOutputs[0].wait_for(0):
- out = futureOutputs[0].get()
- predictionsQueue.put(np.copy([out]))
- del futureOutputs[0]
- framesThread = Thread(target=framesThreadBody)
- framesThread.start()
- processingThread = Thread(target=processingThreadBody)
- processingThread.start()
- #
- # Postprocessing and rendering loop
- #
- while cv.waitKey(1) < 0:
- try:
- # Request prediction first because they put after frames
- outs = predictionsQueue.get_nowait()
- frame = processedFramesQueue.get_nowait()
- postprocess(frame, outs)
- # Put efficiency information.
- if predictionsQueue.counter > 1:
- label = 'Camera: %.2f FPS' % (framesQueue.getFPS())
- cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
- label = 'Network: %.2f FPS' % (predictionsQueue.getFPS())
- cv.putText(frame, label, (0, 30), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
- label = 'Skipped frames: %d' % (framesQueue.counter - predictionsQueue.counter)
- cv.putText(frame, label, (0, 45), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
- cv.imshow(winName, frame)
- except queue.Empty:
- pass
- process = False
- framesThread.join()
- processingThread.join()
|