123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- %YAML 1.0
- ---
- ################################################################################
- # Object detection models.
- ################################################################################
- # OpenCV's face detection network
- opencv_fd:
- load_info:
- url: "https://github.com/opencv/opencv_3rdparty/raw/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel"
- sha1: "15aa726b4d46d9f023526d85537db81cbc8dd566"
- model: "opencv_face_detector.caffemodel"
- config: "opencv_face_detector.prototxt"
- mean: [104, 177, 123]
- scale: 1.0
- width: 300
- height: 300
- rgb: false
- sample: "object_detection"
- # YOLO4 object detection family from Darknet (https://github.com/AlexeyAB/darknet)
- # YOLO object detection family from Darknet (https://pjreddie.com/darknet/yolo/)
- # Might be used for all YOLOv2, TinyYolov2, YOLOv3, YOLOv4 and TinyYolov4
- yolo:
- load_info:
- url: "https://pjreddie.com/media/files/yolov3.weights"
- sha1: "520878f12e97cf820529daea502acca380f1cb8e"
- model: "yolov3.weights"
- config: "yolov3.cfg"
- mean: [0, 0, 0]
- scale: 0.00392
- width: 416
- height: 416
- rgb: true
- classes: "object_detection_classes_yolov3.txt"
- sample: "object_detection"
- tiny-yolo-voc:
- load_info:
- url: "https://pjreddie.com/media/files/yolov2-tiny-voc.weights"
- sha1: "24b4bd049fc4fa5f5e95f684a8967e65c625dff9"
- model: "tiny-yolo-voc.weights"
- config: "tiny-yolo-voc.cfg"
- mean: [0, 0, 0]
- scale: 0.00392
- width: 416
- height: 416
- rgb: true
- classes: "object_detection_classes_pascal_voc.txt"
- sample: "object_detection"
- # Caffe implementation of SSD model from https://github.com/chuanqi305/MobileNet-SSD
- ssd_caffe:
- load_info:
- url: "https://drive.google.com/uc?export=download&id=0B3gersZ2cHIxRm5PMWRoTkdHdHc"
- sha1: "994d30a8afaa9e754d17d2373b2d62a7dfbaaf7a"
- model: "MobileNetSSD_deploy.caffemodel"
- config: "MobileNetSSD_deploy.prototxt"
- mean: [127.5, 127.5, 127.5]
- scale: 0.007843
- width: 300
- height: 300
- rgb: false
- classes: "object_detection_classes_pascal_voc.txt"
- sample: "object_detection"
- # TensorFlow implementation of SSD model from https://github.com/tensorflow/models/tree/master/research/object_detection
- ssd_tf:
- load_info:
- url: "http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2017_11_17.tar.gz"
- sha1: "9e4bcdd98f4c6572747679e4ce570de4f03a70e2"
- download_sha: "6157ddb6da55db2da89dd561eceb7f944928e317"
- download_name: "ssd_mobilenet_v1_coco_2017_11_17.tar.gz"
- member: "ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb"
- model: "ssd_mobilenet_v1_coco_2017_11_17.pb"
- config: "ssd_mobilenet_v1_coco_2017_11_17.pbtxt"
- mean: [0, 0, 0]
- scale: 1.0
- width: 300
- height: 300
- rgb: true
- classes: "object_detection_classes_coco.txt"
- sample: "object_detection"
- # TensorFlow implementation of Faster-RCNN model from https://github.com/tensorflow/models/tree/master/research/object_detection
- faster_rcnn_tf:
- load_info:
- url: "http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_v2_coco_2018_01_28.tar.gz"
- sha1: "f2e4bf386b9bb3e25ddfcbbd382c20f417e444f3"
- download_sha: "c710f25e5c6a3ce85fe793d5bf266d581ab1c230"
- download_name: "faster_rcnn_inception_v2_coco_2018_01_28.tar.gz"
- member: "faster_rcnn_inception_v2_coco_2018_01_28/frozen_inference_graph.pb"
- model: "faster_rcnn_inception_v2_coco_2018_01_28.pb"
- config: "faster_rcnn_inception_v2_coco_2018_01_28.pbtxt"
- mean: [0, 0, 0]
- scale: 1.0
- width: 800
- height: 600
- rgb: true
- sample: "object_detection"
- ################################################################################
- # Image classification models.
- ################################################################################
- # SqueezeNet v1.1 from https://github.com/DeepScale/SqueezeNet
- squeezenet:
- load_info:
- url: "https://raw.githubusercontent.com/DeepScale/SqueezeNet/b5c3f1a23713c8b3fd7b801d229f6b04c64374a5/SqueezeNet_v1.1/squeezenet_v1.1.caffemodel"
- sha1: "3397f026368a45ae236403ccc81cfcbe8ebe1bd0"
- model: "squeezenet_v1.1.caffemodel"
- config: "squeezenet_v1.1.prototxt"
- mean: [0, 0, 0]
- scale: 1.0
- width: 227
- height: 227
- rgb: false
- classes: "classification_classes_ILSVRC2012.txt"
- sample: "classification"
- # Googlenet from https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
- googlenet:
- load_info:
- url: "http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel"
- sha1: "405fc5acd08a3bb12de8ee5e23a96bec22f08204"
- model: "bvlc_googlenet.caffemodel"
- config: "bvlc_googlenet.prototxt"
- mean: [104, 117, 123]
- scale: 1.0
- width: 224
- height: 224
- rgb: false
- classes: "classification_classes_ILSVRC2012.txt"
- sample: "classification"
- ################################################################################
- # Semantic segmentation models.
- ################################################################################
- # ENet road scene segmentation network from https://github.com/e-lab/ENet-training
- # Works fine for different input sizes.
- enet:
- load_info:
- url: "https://www.dropbox.com/s/tdde0mawbi5dugq/Enet-model-best.net?dl=1"
- sha1: "b4123a73bf464b9ebe9cfc4ab9c2d5c72b161315"
- model: "Enet-model-best.net"
- mean: [0, 0, 0]
- scale: 0.00392
- width: 512
- height: 256
- rgb: true
- classes: "enet-classes.txt"
- sample: "segmentation"
- fcn8s:
- load_info:
- url: "http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel"
- sha1: "c449ea74dd7d83751d1357d6a8c323fcf4038962"
- model: "fcn8s-heavy-pascal.caffemodel"
- config: "fcn8s-heavy-pascal.prototxt"
- mean: [0, 0, 0]
- scale: 1.0
- width: 500
- height: 500
- rgb: false
- sample: "segmentation"
|