models.yml 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166
  1. %YAML 1.0
  2. ---
  3. ################################################################################
  4. # Object detection models.
  5. ################################################################################
  6. # OpenCV's face detection network
  7. opencv_fd:
  8. load_info:
  9. url: "https://github.com/opencv/opencv_3rdparty/raw/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel"
  10. sha1: "15aa726b4d46d9f023526d85537db81cbc8dd566"
  11. model: "opencv_face_detector.caffemodel"
  12. config: "opencv_face_detector.prototxt"
  13. mean: [104, 177, 123]
  14. scale: 1.0
  15. width: 300
  16. height: 300
  17. rgb: false
  18. sample: "object_detection"
  19. # YOLO4 object detection family from Darknet (https://github.com/AlexeyAB/darknet)
  20. # YOLO object detection family from Darknet (https://pjreddie.com/darknet/yolo/)
  21. # Might be used for all YOLOv2, TinyYolov2, YOLOv3, YOLOv4 and TinyYolov4
  22. yolo:
  23. load_info:
  24. url: "https://pjreddie.com/media/files/yolov3.weights"
  25. sha1: "520878f12e97cf820529daea502acca380f1cb8e"
  26. model: "yolov3.weights"
  27. config: "yolov3.cfg"
  28. mean: [0, 0, 0]
  29. scale: 0.00392
  30. width: 416
  31. height: 416
  32. rgb: true
  33. classes: "object_detection_classes_yolov3.txt"
  34. sample: "object_detection"
  35. tiny-yolo-voc:
  36. load_info:
  37. url: "https://pjreddie.com/media/files/yolov2-tiny-voc.weights"
  38. sha1: "24b4bd049fc4fa5f5e95f684a8967e65c625dff9"
  39. model: "tiny-yolo-voc.weights"
  40. config: "tiny-yolo-voc.cfg"
  41. mean: [0, 0, 0]
  42. scale: 0.00392
  43. width: 416
  44. height: 416
  45. rgb: true
  46. classes: "object_detection_classes_pascal_voc.txt"
  47. sample: "object_detection"
  48. # Caffe implementation of SSD model from https://github.com/chuanqi305/MobileNet-SSD
  49. ssd_caffe:
  50. load_info:
  51. url: "https://drive.google.com/uc?export=download&id=0B3gersZ2cHIxRm5PMWRoTkdHdHc"
  52. sha1: "994d30a8afaa9e754d17d2373b2d62a7dfbaaf7a"
  53. model: "MobileNetSSD_deploy.caffemodel"
  54. config: "MobileNetSSD_deploy.prototxt"
  55. mean: [127.5, 127.5, 127.5]
  56. scale: 0.007843
  57. width: 300
  58. height: 300
  59. rgb: false
  60. classes: "object_detection_classes_pascal_voc.txt"
  61. sample: "object_detection"
  62. # TensorFlow implementation of SSD model from https://github.com/tensorflow/models/tree/master/research/object_detection
  63. ssd_tf:
  64. load_info:
  65. url: "http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2017_11_17.tar.gz"
  66. sha1: "9e4bcdd98f4c6572747679e4ce570de4f03a70e2"
  67. download_sha: "6157ddb6da55db2da89dd561eceb7f944928e317"
  68. download_name: "ssd_mobilenet_v1_coco_2017_11_17.tar.gz"
  69. member: "ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb"
  70. model: "ssd_mobilenet_v1_coco_2017_11_17.pb"
  71. config: "ssd_mobilenet_v1_coco_2017_11_17.pbtxt"
  72. mean: [0, 0, 0]
  73. scale: 1.0
  74. width: 300
  75. height: 300
  76. rgb: true
  77. classes: "object_detection_classes_coco.txt"
  78. sample: "object_detection"
  79. # TensorFlow implementation of Faster-RCNN model from https://github.com/tensorflow/models/tree/master/research/object_detection
  80. faster_rcnn_tf:
  81. load_info:
  82. url: "http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_v2_coco_2018_01_28.tar.gz"
  83. sha1: "f2e4bf386b9bb3e25ddfcbbd382c20f417e444f3"
  84. download_sha: "c710f25e5c6a3ce85fe793d5bf266d581ab1c230"
  85. download_name: "faster_rcnn_inception_v2_coco_2018_01_28.tar.gz"
  86. member: "faster_rcnn_inception_v2_coco_2018_01_28/frozen_inference_graph.pb"
  87. model: "faster_rcnn_inception_v2_coco_2018_01_28.pb"
  88. config: "faster_rcnn_inception_v2_coco_2018_01_28.pbtxt"
  89. mean: [0, 0, 0]
  90. scale: 1.0
  91. width: 800
  92. height: 600
  93. rgb: true
  94. sample: "object_detection"
  95. ################################################################################
  96. # Image classification models.
  97. ################################################################################
  98. # SqueezeNet v1.1 from https://github.com/DeepScale/SqueezeNet
  99. squeezenet:
  100. load_info:
  101. url: "https://raw.githubusercontent.com/DeepScale/SqueezeNet/b5c3f1a23713c8b3fd7b801d229f6b04c64374a5/SqueezeNet_v1.1/squeezenet_v1.1.caffemodel"
  102. sha1: "3397f026368a45ae236403ccc81cfcbe8ebe1bd0"
  103. model: "squeezenet_v1.1.caffemodel"
  104. config: "squeezenet_v1.1.prototxt"
  105. mean: [0, 0, 0]
  106. scale: 1.0
  107. width: 227
  108. height: 227
  109. rgb: false
  110. classes: "classification_classes_ILSVRC2012.txt"
  111. sample: "classification"
  112. # Googlenet from https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
  113. googlenet:
  114. load_info:
  115. url: "http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel"
  116. sha1: "405fc5acd08a3bb12de8ee5e23a96bec22f08204"
  117. model: "bvlc_googlenet.caffemodel"
  118. config: "bvlc_googlenet.prototxt"
  119. mean: [104, 117, 123]
  120. scale: 1.0
  121. width: 224
  122. height: 224
  123. rgb: false
  124. classes: "classification_classes_ILSVRC2012.txt"
  125. sample: "classification"
  126. ################################################################################
  127. # Semantic segmentation models.
  128. ################################################################################
  129. # ENet road scene segmentation network from https://github.com/e-lab/ENet-training
  130. # Works fine for different input sizes.
  131. enet:
  132. load_info:
  133. url: "https://www.dropbox.com/s/tdde0mawbi5dugq/Enet-model-best.net?dl=1"
  134. sha1: "b4123a73bf464b9ebe9cfc4ab9c2d5c72b161315"
  135. model: "Enet-model-best.net"
  136. mean: [0, 0, 0]
  137. scale: 0.00392
  138. width: 512
  139. height: 256
  140. rgb: true
  141. classes: "enet-classes.txt"
  142. sample: "segmentation"
  143. fcn8s:
  144. load_info:
  145. url: "http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel"
  146. sha1: "c449ea74dd7d83751d1357d6a8c323fcf4038962"
  147. model: "fcn8s-heavy-pascal.caffemodel"
  148. config: "fcn8s-heavy-pascal.prototxt"
  149. mean: [0, 0, 0]
  150. scale: 1.0
  151. width: 500
  152. height: 500
  153. rgb: false
  154. sample: "segmentation"