123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 |
- import cv2 as cv
- import argparse
- import numpy as np
- parser = argparse.ArgumentParser(description=
- 'Use this script to run Mask-RCNN object detection and semantic '
- 'segmentation network from TensorFlow Object Detection API.')
- parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
- parser.add_argument('--model', required=True, help='Path to a .pb file with weights.')
- parser.add_argument('--config', required=True, help='Path to a .pxtxt file contains network configuration.')
- parser.add_argument('--classes', help='Optional path to a text file with names of classes.')
- parser.add_argument('--colors', help='Optional path to a text file with colors for an every class. '
- 'An every color is represented with three values from 0 to 255 in BGR channels order.')
- parser.add_argument('--width', type=int, default=800,
- help='Preprocess input image by resizing to a specific width.')
- parser.add_argument('--height', type=int, default=800,
- help='Preprocess input image by resizing to a specific height.')
- parser.add_argument('--thr', type=float, default=0.5, help='Confidence threshold')
- args = parser.parse_args()
- np.random.seed(324)
- # Load names of classes
- classes = None
- if args.classes:
- with open(args.classes, 'rt') as f:
- classes = f.read().rstrip('\n').split('\n')
- # Load colors
- colors = None
- if args.colors:
- with open(args.colors, 'rt') as f:
- colors = [np.array(color.split(' '), np.uint8) for color in f.read().rstrip('\n').split('\n')]
- legend = None
- def showLegend(classes):
- global legend
- if not classes is None and legend is None:
- blockHeight = 30
- assert(len(classes) == len(colors))
- legend = np.zeros((blockHeight * len(colors), 200, 3), np.uint8)
- for i in range(len(classes)):
- block = legend[i * blockHeight:(i + 1) * blockHeight]
- block[:,:] = colors[i]
- cv.putText(block, classes[i], (0, blockHeight//2), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
- cv.namedWindow('Legend', cv.WINDOW_NORMAL)
- cv.imshow('Legend', legend)
- classes = None
- def drawBox(frame, classId, conf, left, top, right, bottom):
- # Draw a bounding box.
- cv.rectangle(frame, (left, top), (right, bottom), (0, 255, 0))
- label = '%.2f' % conf
- # Print a label of class.
- if classes:
- assert(classId < len(classes))
- label = '%s: %s' % (classes[classId], label)
- labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
- top = max(top, labelSize[1])
- cv.rectangle(frame, (left, top - labelSize[1]), (left + labelSize[0], top + baseLine), (255, 255, 255), cv.FILLED)
- cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
- # Load a network
- net = cv.dnn.readNet(cv.samples.findFile(args.model), cv.samples.findFile(args.config))
- net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
- winName = 'Mask-RCNN in OpenCV'
- cv.namedWindow(winName, cv.WINDOW_NORMAL)
- cap = cv.VideoCapture(cv.samples.findFileOrKeep(args.input) if args.input else 0)
- legend = None
- while cv.waitKey(1) < 0:
- hasFrame, frame = cap.read()
- if not hasFrame:
- cv.waitKey()
- break
- frameH = frame.shape[0]
- frameW = frame.shape[1]
- # Create a 4D blob from a frame.
- blob = cv.dnn.blobFromImage(frame, size=(args.width, args.height), swapRB=True, crop=False)
- # Run a model
- net.setInput(blob)
- boxes, masks = net.forward(['detection_out_final', 'detection_masks'])
- numClasses = masks.shape[1]
- numDetections = boxes.shape[2]
- # Draw segmentation
- if not colors:
- # Generate colors
- colors = [np.array([0, 0, 0], np.uint8)]
- for i in range(1, numClasses + 1):
- colors.append((colors[i - 1] + np.random.randint(0, 256, [3], np.uint8)) / 2)
- del colors[0]
- boxesToDraw = []
- for i in range(numDetections):
- box = boxes[0, 0, i]
- mask = masks[i]
- score = box[2]
- if score > args.thr:
- classId = int(box[1])
- left = int(frameW * box[3])
- top = int(frameH * box[4])
- right = int(frameW * box[5])
- bottom = int(frameH * box[6])
- left = max(0, min(left, frameW - 1))
- top = max(0, min(top, frameH - 1))
- right = max(0, min(right, frameW - 1))
- bottom = max(0, min(bottom, frameH - 1))
- boxesToDraw.append([frame, classId, score, left, top, right, bottom])
- classMask = mask[classId]
- classMask = cv.resize(classMask, (right - left + 1, bottom - top + 1))
- mask = (classMask > 0.5)
- roi = frame[top:bottom+1, left:right+1][mask]
- frame[top:bottom+1, left:right+1][mask] = (0.7 * colors[classId] + 0.3 * roi).astype(np.uint8)
- for box in boxesToDraw:
- drawBox(*box)
- # Put efficiency information.
- t, _ = net.getPerfProfile()
- label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
- cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
- showLegend(classes)
- cv.imshow(winName, frame)
|