123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109 |
- //
- // this sample demonstrates parsing (segmenting) human body parts from an image using opencv's dnn,
- // based on https://github.com/Engineering-Course/LIP_JPPNet
- //
- // get the pretrained model from: https://www.dropbox.com/s/qag9vzambhhkvxr/lip_jppnet_384.pb?dl=0
- //
- #include <opencv2/dnn.hpp>
- #include <opencv2/highgui.hpp>
- #include <opencv2/imgproc.hpp>
- using namespace cv;
- static Mat parse_human(const Mat &image, const std::string &model, int backend=dnn::DNN_BACKEND_DEFAULT, int target=dnn::DNN_TARGET_CPU) {
- // this network expects an image and a flipped copy as input
- Mat flipped;
- flip(image, flipped, 1);
- std::vector<Mat> batch;
- batch.push_back(image);
- batch.push_back(flipped);
- Mat blob = dnn::blobFromImages(batch, 1.0, Size(), Scalar(104.00698793, 116.66876762, 122.67891434));
- dnn::Net net = dnn::readNet(model);
- net.setPreferableBackend(backend);
- net.setPreferableTarget(target);
- net.setInput(blob);
- Mat out = net.forward();
- // expected output: [2, 20, 384, 384], (2 lists(orig, flipped) of 20 body part heatmaps 384x384)
- // LIP classes:
- // 0 Background, 1 Hat, 2 Hair, 3 Glove, 4 Sunglasses, 5 UpperClothes, 6 Dress, 7 Coat, 8 Socks, 9 Pants
- // 10 Jumpsuits, 11 Scarf, 12 Skirt, 13 Face, 14 LeftArm, 15 RightArm, 16 LeftLeg, 17 RightLeg, 18 LeftShoe. 19 RightShoe
- Vec3b colors[] = {
- Vec3b(0, 0, 0), Vec3b(128, 0, 0), Vec3b(255, 0, 0), Vec3b(0, 85, 0), Vec3b(170, 0, 51), Vec3b(255, 85, 0),
- Vec3b(0, 0, 85), Vec3b(0, 119, 221), Vec3b(85, 85, 0), Vec3b(0, 85, 85), Vec3b(85, 51, 0), Vec3b(52, 86, 128),
- Vec3b(0, 128, 0), Vec3b(0, 0, 255), Vec3b(51, 170, 221), Vec3b(0, 255, 255), Vec3b(85, 255, 170),
- Vec3b(170, 255, 85), Vec3b(255, 255, 0), Vec3b(255, 170, 0)
- };
- Mat segm(image.size(), CV_8UC3, Scalar(0,0,0));
- Mat maxval(image.size(), CV_32F, Scalar(0));
- // iterate over body part heatmaps (LIP classes)
- for (int i=0; i<out.size[1]; i++) {
- // resize heatmaps to original image size
- // "head" is the original image result, "tail" the flipped copy
- Mat head, h(out.size[2], out.size[3], CV_32F, out.ptr<float>(0,i));
- resize(h, head, image.size());
- // we have to swap the last 3 pairs in the "tail" list
- static int tail_order[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,14,17,16,19,18};
- Mat tail, t(out.size[2], out.size[3], CV_32F, out.ptr<float>(1,tail_order[i]));
- resize(t, tail, image.size());
- flip(tail, tail, 1);
- // mix original and flipped result
- Mat avg = (head + tail) * 0.5;
- // write color if prob value > maxval
- Mat cmask;
- compare(avg, maxval, cmask, CMP_GT);
- segm.setTo(colors[i], cmask);
- // keep largest values for next iteration
- max(avg, maxval, maxval);
- }
- cvtColor(segm, segm, COLOR_RGB2BGR);
- return segm;
- }
- int main(int argc, char**argv)
- {
- CommandLineParser parser(argc,argv,
- "{help h | | show help screen / args}"
- "{image i | | person image to process }"
- "{model m |lip_jppnet_384.pb| network model}"
- "{backend b | 0 | Choose one of computation backends: "
- "0: automatically (by default), "
- "1: Halide language (http://halide-lang.org/), "
- "2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
- "3: OpenCV implementation, "
- "4: VKCOM, "
- "5: CUDA }"
- "{target t | 0 | Choose one of target computation devices: "
- "0: CPU target (by default), "
- "1: OpenCL, "
- "2: OpenCL fp16 (half-float precision), "
- "3: VPU, "
- "4: Vulkan, "
- "6: CUDA, "
- "7: CUDA fp16 (half-float preprocess) }"
- );
- if (argc == 1 || parser.has("help"))
- {
- parser.printMessage();
- return 0;
- }
- std::string model = parser.get<std::string>("model");
- std::string image = parser.get<std::string>("image");
- int backend = parser.get<int>("backend");
- int target = parser.get<int>("target");
- Mat input = imread(image);
- Mat segm = parse_human(input, model, backend, target);
- imshow("human parsing", segm);
- waitKey();
- return 0;
- }
|